37 research outputs found

    Contrasting carbonate depositional systems for Pliocene cool-water limestones cropping out in central Hawke's Bay, New Zealand

    Get PDF
    Pliocene limestone formations in central Hawke's Bay (eastern North Island, New Zealand) accumulated on and near the margins of a narrow forearc basin seaway within the convergent Australia/Pacific plate boundary zone. The active tectonic setting and varied paleogeographic features of the limestone units investigated, in association with probable glacioeustatic sea-level fluctuations, resulted in complex stratigraphic architectures and contrasting types of carbonate accumulation on either side of the seaway. Here, we recognise recurring patterns of sedimentary facies, and sequences and systems tracts bounded by key physical surfaces within the limestone sheets. The facies types range from Bioclastic (B) to Siliciclastic (S) end-members via Mixed (M) carbonate-siliciclastic deposits. Skeletal components are typical cool-water associations dominated by epifaunal calcitic bivalves, bryozoans, and especially barnacles. Siliciclastic contents vary from one formation to another, and highlight siliciclastic-rich limestone units in the western ranges versus siliciclastic-poor limestone units in the eastern coastal hills. Heterogeneities in facies types, stratal patterns, and also in diagenetic pathways between eastern and western limestone units are considered to originate in the coeval occurrence in different parts of the forearc basin of two main morphodynamic carbonate systems over time

    High Throughput Petrochronology and Sedimentary Provenance Analysis by Automated Phase Mapping and LAICPMS

    Get PDF
    The first step in most geochronological studies is to extract dateable minerals from the host rock, which is time consuming, removes textural context, and increases the chance for sample cross contamination. We here present a new method to rapidly perform in situ analyses by coupling a fast scanning electron microscope (SEM) with Energy Dispersive X-ray Spectrometer (EDS) to a Laser Ablation Inductively Coupled Plasma Mass Spectrometer (LAICPMS) instrument. Given a polished hand specimen, a petrographic thin section, or a grain mount, Automated Phase Mapping (APM) by SEM/EDS produces chemical and mineralogical maps from which the X-Y coordinates of the datable minerals are extracted. These coordinates are subsequently passed on to the laser ablation system for isotopic analysis. We apply the APM1LAICPMS method to three igneous, metamorphic, and sedimentary case studies. In the first case study, a polished slab of granite from Guernsey was scanned for zircon, producing a 60968 Ma weighted mean age. The second case study investigates a paragneiss from an ultra high pressure terrane in the north Qaidam terrane (Qinghai, China). One hundred seven small (25 mm) metamorphic zircons were analyzed by LAICPMS to confirm a 41964 Ma age of peak metamorphism. The third and final case study uses APM1LAICPMS to generate a large provenance data set and trace the provenance of 25 modern sediments from Angola, documenting longshore drift of Orange River sediments over a distance of 1,500 km. These examples demonstrate that APM1LAICPMS is an efficient and cost effective way to improve the quantity and quality of geochronological data

    Iron and Calcium Biomineralizations in the Pampean Coastal Plains, Argentina: Their Role in the Environmental Reconstruction of the Holocene

    Get PDF
    Biomineralizations are biogenic composites, crystalline or amorphous,produced by the metabolic activity of organisms distributed all over the world. Theaim of this work was to evaluate the presence of iron and calcium biomineralizationsand their influence in the physicochemical and mineralochemical variations inpaleo and actual pedosedimentary sequences of the coastal plains in Mar Chiquita.The complex interaction of calcium with iron biomineralizations, as framboidal andpoliframboidal pyrites associated with gypsum, barite, calcite, halite, and iron oxyhydroxides,have demonstrated the active and complex biogeochemistry that occursin the temperate?wet paleoesturaries and estuaries of the coastal Pampean Plains.Particularly the consequences that different human activities could have.Fil: Osterrieth, Margarita Luisa. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Frayssinet, Celia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de GeologĂ­a de Costas y del Cuaternario. Provincia de Buenos Aires. GobernaciĂłn. ComisiĂłn de Investigaciones CientĂ­ficas. Instituto de GeologĂ­a de Costas y del Cuaternario; ArgentinaFil: Frayssinet, Lucrecia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; Argentin

    Indentation of the Pamirs with respect to the northern margin of Tibet: constraints from the Tarim basin sedimentary record

    Get PDF
    The Pamirs represent the indented westward continuation of the northern margin of the Tibetan Plateau, dividing the Tarim and Tajik basins. Their evolution may be a key factor influencing aridification of the Asian interior, yet the tectonics of the Pamir Salient are poorly understood. We present a provenance study of the Aertashi section, a Paleogene to late Neogene clastic succession deposited in the Tarim basin to the north of the NW margin of Tibet (the West Kunlun) and to the east of the Pamirs. Our detrital zircon U-Pb ages coupled with zircon fission track, bulk rock Sm-Nd, and petrography data document changes in contributing source terranes during the Oligocene to Miocene, which can be correlated to regional tectonics. We propose a model for the evolution of the Pamir and West Kunlun (WKL), in which the WKL formed topography since at least ~200 Ma. By ~25 Ma, movement along the Pamir-bounding faults such as the Kashgar-Yecheng Transfer System had commenced, marking the onset of Pamir indentation into the Tarim-Tajik basin. This is coincident with basinward expansion of the northern WKL margin, which changed the palaeodrainage pattern within the Kunlun, progressively cutting off the more southerly WKL sources from the Tarim basin. An abrupt change in the provenance and facies of sediments at Aertashi has a maximum age of 14 Ma; this change records when the Pamir indenter had propagated sufficiently far north that the North Pamir was now located proximal to the Aertashi region

    Annotated record of the detailed examination of Mn deposits from DSDP Site 74, Leg 8 (Core 74-12)

    No full text
    Site 74 is located 250 miles northeast of the Marquesas Islands and lies 270 miles south of Site 73 and 400 miles north of Site 75. It is one of the sites along the N-S line drilled during Leg 8 to investigate the east-west trending accumulation of sediments centered about 2°N near 140°W. Site 74 is located near the center of a relatively flat area about 3 miles across. There is some indication of minor deformation at the site

    Annotated record of the detailed examination of Mn deposits from DSDP Site 70, Leg 8 (Cores 8-70-5, 8-70-7, 8-70A-9)

    No full text
    Site 70 is located about 20 miles north of the northern boundary of the Clipperton Fracture Zone near 140° W. It is the northernmost of the N-S line of sites drilled during Leg 8 to investigate the east-west trending accumulation of sediment centered at about 2°N near 140°W. It lies about 500 miles south of Site 42 of Leg 5, the southernmost of a line of sites continuing to the north. The R/V Argo SCAN survey indicated that the area was one of low, broad abyssal hills, 2 to 10 miles in width on E-W profiles, with relatively thick sediment cover

    Annotated record of the detailed examination of Mn deposits from DSDP Site 75, Leg 8 (Core 75-9)

    No full text
    Site 75 is located 300 miles southeast of the Marquesas Islands; 400 miles south of Site 74. It is the southernmost of the sites along the N-S line drilled during Leg 8 to investigate the east-west trending accumulation of sediments centered about 2°N near 140°W. This site is a replacement for the site at 31°S originally chosen by the JOIDES Pacific Advisory Panel (PAP Site 27). The original site was not drilled since a preliminary R/V Argo SCAN survey indicated insufficient sediment thickness
    corecore