307 research outputs found
Social Transmission of Avoidance Behavior under Situational Change in Learned and Unlearned Rats
BACKGROUND: Rats receive information from other conspecifics by observation or other types of social interaction. Such social interaction may contribute to the effective adaptation to changes of environment such as situational switching. Learning to avoid dangerous places or objects rapidly occurs with even a single conditioning session, and the conditioned memory tends to be sustained over long periods. The avoidance is important for adaptation, but the details of the conditions under which the social transmission of avoidance is formed are unknown. We demonstrate that the previous experience of avoidance learning is important for the formation of behaviors for social transmission of avoidance and that the experienced rats adapt to a change of situation determined by the presence or absence of aversive stimuli. We systematically investigated social influence on avoidance behavior using a passive avoidance test in a light/dark two-compartment apparatus. METHODOLOGY/PRINCIPAL FINDINGS: Rats were divided into two groups, one receiving foot shocks and another with no aversive experience in a dark compartment. Experienced and inexperienced rats were further divided into subjects and partners. In Experiment 1, each subject experienced (1) interaction with an experienced partner, (2) interaction with an inexperienced partner, or (3) no interaction. In Experiment 2, each subject experienced interaction with a partner that received a shock. The entering latency to a light compartment was measured. The avoidance behavior of experienced rats was inhibited by interaction with inexperienced or experienced partners in a safely-changed situation. The avoidance of experienced rats was reinstated in a dangerously-changed situation by interaction with shocked rats. In contrast, the inexperienced rats were not affected by any social circumstances. CONCLUSIONS/SIGNIFICANCE: These results suggest that transmitted information among rats can be updated under a situational change and that the previous experience is crucial for social enhancement and inhibition of avoidance behavior in rats
The acheulean handaxe : More like a bird's song than a beatles' tune?
© 2016 Wiley Periodicals, Inc. KV is supported by the Netherlands Organization for Scientific Research. MC is supported by the Canada Research Chairs Program, the Social Sciences and Humanities Research of Canada, the Canada Foundation for Innovation, the British Columbia Knowledge Development Fund, and Simon Fraser UniversityPeer reviewedPublisher PD
Optimal traffic organisation in ants under crowded conditions
Efficient transportation, a hot topic in nonlinear science, is essential for
modern societies and the survival of biological species. Biological evolution
has generated a rich variety of successful solutions, which have inspired
engineers to design optimized artificial systems. Foraging ants, for example,
form attractive trails that support the exploitation of initially unknown food
sources in almost the minimum possible time. However, can this strategy cope
with bottleneck situations, when interactions cause delays that reduce the
overall flow? Here, we present an experimental study of ants confronted with
two alternative routes. We find that pheromone-based attraction generates one
trail at low densities, whereas at a high level of crowding, another trail is
established before traffic volume is affected, which guarantees that an optimal
rate of food return is maintained. This bifurcation phenomenon is explained by
a nonlinear modelling approach. Surprisingly, the underlying mechanism is based
on inhibitory interactions. It implies capacity reserves, a limitation of the
density-induced speed reduction, and a sufficient pheromone concentration for
reliable trail perception. The balancing mechanism between cohesive and
dispersive forces appears to be generic in natural, urban and transportation
systems.Comment: For related work see http://www.helbing.or
Observational Conditioning in Flower Choice Copying by Bumblebees (Bombus terrestris): Influence of Observer Distance and Demonstrator Movement
A. Avargues-Weber was funded by a postdoctoral fellowship from Fyssen fondation: http://www.fondationfyssen.fr/. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Collective animal navigation and migratory culture: From theoretical models to empirical evidence
Animals often travel in groups, and their navigational decisions can be influenced by social interactions. Both theory and empirical observations suggest that such collective navigation can result in individuals improving their ability to find their way and could be one of the key benefits of sociality for these species. Here, we provide an overview of the potential mechanisms underlying collective navigation, review the known, and supposed, empirical evidence for such behaviour and highlight interesting directions for future research. We further explore how both social and collective learning during group navigation could lead to the accumulation of knowledge at the population level, resulting in the emergence of migratory culture
Basic Taste Stimuli Elicit Unique Responses in Facial Skin Blood Flow
Facial expression changes characteristically with the emotions induced by basic tastes in humans. We tested the hypothesis that the five basic tastes also elicit unique responses in facial skin blood flow. Facial skin blood flow was measured using laser speckle flowgraphy in 16 healthy subjects before and during the application of basic taste stimuli in the oral cavity for 20 s. The skin blood flow in the eyelid increased in response to sweet and umami taste stimuli, while that in the nose decreased in response to a bitter stimulus. There was a significant correlation between the subjective hedonic scores accompanying these taste stimuli and the above changes in skin blood flow. These results demonstrate that sweet, umami, and bitter tastes induce unique changes in facial skin blood flow that reflect subjective hedonic scores
Social Interactions of Juvenile Brown Boobies at Sea as Observed with Animal-Borne Video Cameras
While social interactions play a crucial role on the development of young
individuals, those of highly mobile juvenile birds in inaccessible environments
are difficult to observe. In this study, we deployed miniaturised video
recorders on juvenile brown boobies Sula leucogaster, which had
been hand-fed beginning a few days after hatching, to examine how social
interactions between tagged juveniles and other birds affected their flight and
foraging behaviour. Juveniles flew longer with congeners, especially with adult
birds, than solitarily. In addition, approximately 40% of foraging
occurred close to aggregations of congeners and other species. Young seabirds
voluntarily followed other birds, which may directly enhance their foraging
success and improve foraging and flying skills during their developmental stage,
or both
Social density processes regulate the functioning and performance of foraging human teams
Social density processes impact the activity and order of collective behaviours in a variety of biological systems. Much effort has been devoted to understanding how density of people affects collective human motion in the context of pedestrian flows. However, there is a distinct lack of empirical data investigating the effects of social density on human behaviour in cooperative contexts. Here, we examine the functioning and performance of human teams in a central-place foraging arena using high-resolution GPS data. We show that team functioning (level of coordination) is greatest at intermediate social densities, but contrary to our expectations, increased coordination at intermediate densities did not translate into improved collective foraging performance, and foraging accuracy was equivalent across our density treatments. We suggest that this is likely a consequence of foragers relying upon visual channels (local information) to achieve coordination but relying upon auditory channels (global information) to maximise foraging returns. These findings provide new insights for the development of more sophisticated models of human collective behaviour that consider different networks for communication (e.g. visual and vocal) that have the potential to operate simultaneously in cooperative contexts
Able-Bodied Wild Chimpanzees Imitate a Motor Procedure Used by a Disabled Individual to Overcome Handicap
Chimpanzee culture has generated intense recent interest, fueled by the technical complexity of chimpanzee tool-using traditions; yet it is seriously doubted whether chimpanzees are able to learn motor procedures by imitation under natural conditions. Here we take advantage of an unusual chimpanzee population as a ‘natural experiment’ to identify evidence for imitative learning of this kind in wild chimpanzees. The Sonso chimpanzee community has suffered from high levels of snare injury and now has several manually disabled members. Adult male Tinka, with near-total paralysis of both hands, compensates inability to scratch his back manually by employing a distinctive technique of holding a growing liana taut while making side-to-side body movements against it. We found that seven able-bodied young chimpanzees also used this ‘liana-scratch’ technique, although they had no need to. The distribution of the liana-scratch technique was statistically associated with individuals' range overlap with Tinka and the extent of time they spent in parties with him, confirming that the technique is acquired by social learning. The motivation for able-bodied chimpanzees copying his variant is unknown, but the fact that they do is evidence that the imitative learning of motor procedures from others is a natural trait of wild chimpanzees
- …