2,343 research outputs found
Studying the Interstellar Medium and the inner region of NPS/Loop 1 with shadow observations toward MBM36
We analyzed data from a shadow observation of the high density molecular
cloud MBM36 (l~4{\deg}, b~35{\deg}) with Suzaku. MBM36 is located in a region
that emits relatively weakly in the 3/4~keV band, compared to the surrounding
NPS/Loop 1 structure and the Galactic Bulge. The contrast between a high and
low density targets in the MBM36 area allows one to separate the local and
distant contributors to the Soft Diffuse X-ray Background, providing a much
better characterization of the individual components compared to single
pointing observations. We identify two non-local thermal components, one at
kT~0.12 keV and one at kT~0.29keV. The colder component matches well with
models of emission from the higher latitude region of the Galactic Bulge. The
emission of the warmer component is in agreement with models predicting that
the NPS is due to a hypershell from the center of the Milky Way. Geometrical
and pressure calculations rule out a nearby bubble as responsible for the
emission associate with the NPS. Any Galactic Halo/CircumGalactic Halo
emission, if present, is outshined by the other components. We also report an
excess emission around 0.9~keV, likely due to an overabundance of NeIX.Comment: 8 pages, 3 figures, approved for publication on Ap
X-Ray Emission from the Warm Hot Intergalactic Medium
The number of detected baryons in the Universe at z<0.5 is much smaller than
predicted by standard big bang nucleosynthesis and by the detailed observation
of the Lyman alpha forest at red-shift z=2. Hydrodynamical simulations indicate
that a large fraction of the baryons today is expected to be in a ``warm-hot''
(10^5-10^7K) filamentary gas, distributed in the intergalactic medium. This
gas, if it exists, should be observable only in the soft X-ray and UV bands.
Using the predictions of a particular hydrodynamic model, we simulated the
expected X-ray flux as a function of energy in the 0.1-2 keV band due to the
Warm-Hot Intergalactic Medium (WHIM), and compared it with the flux from local
and high red-shift diffuse components. Our results show that as much as 20% of
the total diffuse X-ray background (DXB) in the energy range 0.37-0.925keV
could be due to X-ray flux from the WHIM, 70% of which comes from filaments at
redshift z between 0.1 and 0.6. Simulations done using a FOV of 3', comparable
with that of Suzaku and Constellation-X, show that in more than 20% of the
observations we expect the WHIM flux to contribute to more than 20% of the DXB.
These simulations also show that in about 10% of all the observations a single
bright filament in the FOV accounts, alone, for more than 20% of the DXB flux.
Red-shifted oxygen lines should be clearly visible in these observations.Comment: 19 pages, 6 figure
A battery-operated, stabilized, high-energy pulsed electron gun for the production of rare gas excimers
We report on the design of a new type of electron gun to be used for
experiments of infrared emission spectroscopy of rare gas excimers. It is based
on a filament heated by means of a pack of rechargeable batteries floated atop
the high-voltage power supply. The filament current is controlled by a feedback
circuit including a superluminescent diode decoupled from the high voltage by
means of an optical fiber. Our experiment requires that the charge injection is
pulsed and constant and stable in time. This electron gun can deliver several
tens of nC per pulse of electrons of energy up to keV into the sample
cell. This new design eliminates ripples in the emission current and ensures up
to 12 hrs of stable performance.Comment: 1o pages, 8 figures, to be submitted to Review of Scientific
Instrument
Reconstructing the shape of the correlation function
We develop an estimator for the correlation function which, in the ensemble
average, returns the shape of the correlation function, even for signals that
have significant correlations on the scale of the survey region. Our estimator
is general and works in any number of dimensions. We develop versions of the
estimator for both diffuse and discrete signals. As an application, we examine
Monte Carlo simulations of X-ray background measurements. These include a
realistic, spatially-inhomogeneous population of spurious detector events. We
discuss applying the estimator to the averaging of correlation functions
evaluated on several small fields, and to other cosmological applications.Comment: 10 pages, 5 figures, submitted to ApJS. Methods and results unchanged
but text is expanded and significantly reordered in response to refere
New isogenic wild types in N. crassa
New isogenic wild types in N. crass
An experimental apparatus for measuring the Casimir effect at large distances
An experimental set-up for the measurement of the Casimir effect at
separations larger than a few microns is presented. The apparatus is based on a
mechanical resonator and uses a homodyne detection technique to sense the
Casimir force in the plane-parallel configuration. First measurements in the
3-10 micrometer range show an unexpected large force probably due to patch
effects.Comment: Proceedings of the workshop On the 60 Years on Casimir Effec
Observed Limits on Charge Exchange Contributions to the Diffuse X-ray Background
We present a high resolution spectrum of the diffuse X-ray background from
0.1 to 1 keV for a ~1 region of the sky centered at l=90, b=+60 using a
36-pixel array of microcalorimeters flown on a sounding rocket. With an energy
resolution of 11 eV FWHM below 1 keV, the spectrum's observed line ratios help
separate charge exchange contributions originating within the heliosphere from
thermal emission of hot gas in the interstellar medium. The X-ray sensitivity
below 1 keV was reduced by about a factor of four from contamination that
occurred early in the flight, limiting the significance of the results. The
observed centroid of helium-like O VII is 568+2-3 eV at 90% confidence. Since
the centroid expected for thermal emission is 568.4 eV while for charge
exchange is 564.2 eV, thermal emission appears to dominate for this line
complex, consistent with much of the high-latitude O VII emission originating
in 2-3 x 10^6 K gas in the Galactic halo. On the other hand, the observed ratio
of C VI Ly gamma to Ly alpha is 0.3+-0.2. The expected ratios are 0.04 for
thermal emission and 0.24 for charge exchange, indicating that charge exchange
must contribute strongly to this line and therefore potentially to the rest of
the ROSAT R12 band usually associated with 10^6 K emission from the Local Hot
Bubble. The limited statistics of this experiment and systematic uncertainties
due to the contamination require only >32% thermal emission for O VII and >20%
from charge exchange for C VI at the 90% confidence level. An experimental gold
coating on the silicon substrate of the array greatly reduced extraneous
signals induced on nearby pixels from cosmic rays passing through the
substrate, reducing the triggered event rate by a factor of 15 from a previous
flight of the instrument.Comment: 14 pages, 7 figures, to be published in Ap
RetinaNet Object Detector based on Analog-to-Spiking Neural Network Conversion
The paper proposes a method to convert a deep learning object detector into
an equivalent spiking neural network. The aim is to provide a conversion
framework that is not constrained to shallow network structures and
classification problems as in state-of-the-art conversion libraries. The
results show that models of higher complexity, such as the RetinaNet object
detector, can be converted with limited loss in performance.Comment: 5 pages, submitted to ISCMI 2021 conferenc
Lithium Experiment on Solar Neutrinos to Weight the CNO Cycle
The measurement of the flux of beryllium neutrinos with the accuracy of about
10% and CNO neutrinos with the accuracy 30% will enable to find the flux of
pp-neutrinos in the source with the accuracy better than 1% using the
luminosity constraint. The future experiments on \nu e- scattering will enable
to measure with very good accuracy the flux of beryllium and pp-neutrinos on
the Earth. The ratio of the flux of pp-neutrinos on the Earth and in the source
will enable to find with very good accuracy a mixing angle theta solar. Lithium
detector has high sensitivity to CNO neutrinos and can find the contribution of
CNO cycle to the energy generated in the Sun. This will be a stringent test of
the theory of stellar evolution and combined with other experiments will
provide a precise determination of the flux of pp-neutrinos in the source and a
mixing angle theta solar. The work on the development of the technology of
lithium experiment is now in progress.Comment: Minor corrections, one reference added, 11 pages, 2 figures, talk
given at NANP 2003, Dubna, Russia, June 200
- …