141 research outputs found

    Threat-sensitive anti-predator defence in precocial wader, the northern lapwing Vanellus vanellus

    Get PDF
    Birds exhibit various forms of anti-predator behaviours to avoid reproductive failure, with mobbing—observation, approach and usually harassment of a predator—being one of the most commonly observed. Here, we investigate patterns of temporal variation in the mobbing response exhibited by a precocial species, the northern lapwing (Vanellus vanellus). We test whether brood age and self-reliance, or the perceived risk posed by various predators, affect mobbing response of lapwings. We quantified aggressive interactions between lapwings and their natural avian predators and used generalized additive models to test how timing and predator species identity are related to the mobbing response of lapwings. Lapwings diversified mobbing response within the breeding season and depending on predator species. Raven Corvus corax, hooded crow Corvus cornix and harriers evoked the strongest response, while common buzzard Buteo buteo, white stork Ciconia ciconia, black-headed gull Chroicocephalus ridibundus and rook Corvus frugilegus were less frequently attacked. Lapwings increased their mobbing response against raven, common buzzard, white stork and rook throughout the breeding season, while defence against hooded crow, harriers and black-headed gull did not exhibit clear temporal patterns. Mobbing behaviour of lapwings apparently constitutes a flexible anti-predator strategy. The anti-predator response depends on predator species, which may suggest that lapwings distinguish between predator types and match mobbing response to the perceived hazard at different stages of the breeding cycle. We conclude that a single species may exhibit various patterns of temporal variation in anti-predator defence, which may correspond with various hypotheses derived from parental investment theory

    Integrative Genomics Identifies the Molecular Basis of Resistance to Azacitidine Therapy in Myelodysplastic Syndromes

    Full text link
    © 2017 The Author(s) Myelodysplastic syndromes and chronic myelomonocytic leukemia are blood disorders characterized by ineffective hematopoiesis and progressive marrow failure that can transform into acute leukemia. The DNA methyltransferase inhibitor 5-azacytidine (AZA) is the most effective pharmacological option, but only ∼50% of patients respond. A response only manifests after many months of treatment and is transient. The reasons underlying AZA resistance are unknown, and few alternatives exist for non-responders. Here, we show that AZA responders have more hematopoietic progenitor cells (HPCs) in the cell cycle. Non-responder HPC quiescence is mediated by integrin α5 (ITGA5) signaling and their hematopoietic potential improved by combining AZA with an ITGA5 inhibitor. AZA response is associated with the induction of an inflammatory response in HPCs in vivo. By molecular bar coding and tracking individual clones, we found that, although AZA alters the sub-clonal contribution to different lineages, founder clones are not eliminated and continue to drive hematopoiesis even in complete responders

    Phase I trial of CYT997, a novel cytotoxic and vascular-disrupting agent

    Get PDF
    BACKGROUND: CYT997 is a novel microtubule inhibitor and vascular-disrupting agent with marked preclinical anti-tumour activity. METHODS: This phase I dose-escalation study assessed the safety, tolerability, pharmacokinetics and pharmacodynamics of CYT997 administered by continuous intravenous infusion over 24 h every 3 weeks to patients with advanced solid tumours

    Structural and biophysical properties of the integrin-associated cytoskeletal protein talin

    Get PDF
    Talin is a large cytoskeletal protein (2541 amino acid residues) which plays a key role in integrin-mediated events that are crucial for cell adhesion, migration, proliferation and survival. This review summarises recent work on the structure of talin and on some of the structurally better defined interactions with other proteins. The N-terminal talin head (approx. 50 kDa) consists of an atypical FERM domain linked to a long flexible rod (approx. 220 kDa) made up of a series of amphipathic helical bundle domains. The F3 FERM subdomain in the head binds the cytoplasmic tail of integrins, but this interaction can be inhibited by an interaction of F3 with a helical bundle in the talin rod, the so-called “autoinhibited form” of the molecule. The talin rod contains a second integrin-binding site, at least two actin-binding sites and a large number of binding sites for vinculin, which is important in reinforcing the initial integrin–actin link mediated by talin. The vinculin binding sites are defined by hydrophobic residues buried within helical bundles, and these must unfold to allow vinculin binding. Recent experiments suggest that this unfolding may be mediated by mechanical force exerted on the talin molecule by actomyosin contraction

    Self-Organization of Muscle Cell Structure and Function

    Get PDF
    The organization of muscle is the product of functional adaptation over several length scales spanning from the sarcomere to the muscle bundle. One possible strategy for solving this multiscale coupling problem is to physically constrain the muscle cells in microenvironments that potentiate the organization of their intracellular space. We hypothesized that boundary conditions in the extracellular space potentiate the organization of cytoskeletal scaffolds for directed sarcomeregenesis. We developed a quantitative model of how the cytoskeleton of neonatal rat ventricular myocytes organizes with respect to geometric cues in the extracellular matrix. Numerical results and in vitro assays to control myocyte shape indicated that distinct cytoskeletal architectures arise from two temporally-ordered, organizational processes: the interaction between actin fibers, premyofibrils and focal adhesions, as well as cooperative alignment and parallel bundling of nascent myofibrils. Our results suggest that a hierarchy of mechanisms regulate the self-organization of the contractile cytoskeleton and that a positive feedback loop is responsible for initiating the break in symmetry, potentiated by extracellular boundary conditions, is required to polarize the contractile cytoskeleton

    Redistribution of Actin during Assembly and Reassembly of the Contractile Ring in Grasshopper Spermatocytes

    Get PDF
    Cytokinesis in animal cells requires the assembly of an actomyosin contractile ring to cleave the cell. The ring is highly dynamic; it assembles and disassembles during each cell cleavage, resulting in the recurrent redistribution of actin. To investigate this process in grasshopper spermatocytes, we mechanically manipulated the spindle to induce actin redistribution into ectopic contractile rings, around reassembled lateral spindles. To enhance visualization of actin, we folded the spindle at its equator to convert the remnants of the partially assembled ring into a concentrated source of actin. Filaments from the disintegrating ring aligned along reorganizing spindle microtubules, suggesting that their incorporation into the new ring was mediated by microtubules. We tracked incorporation by speckling actin filaments with Qdots and/or labeling them with Alexa 488-phalloidin. The pattern of movement implied that actin was transported along spindle microtubules, before entering the ring. By double-labeling dividing cells, we imaged actin filaments moving along microtubules near the contractile ring. Together, our findings indicate that in one mechanism of actin redistribution, actin filaments are transported along spindle microtubule tracks in a plus-end–directed fashion. After reaching the spindle midzone, the filaments could be transported laterally to the ring. Notably, actin filaments undergo a dramatic trajectory change as they enter the ring, implying the existence of a pulling force. Two other mechanisms of actin redistribution, cortical flow and de novo assembly, are also present in grasshopper, suggesting that actin converges at the nascent contractile ring from diffuse sources within the cytoplasm and cortex, mediated by spindle microtubules

    A Climate Change Vulnerability Assessment of California's At-Risk Birds

    Get PDF
    Conservationists must develop new strategies and adapt existing tools to address the consequences of anthropogenic climate change. To support statewide climate change adaptation, we developed a framework for assessing climate change vulnerability of California's at-risk birds and integrating it into the existing California Bird Species of Special Concern list. We defined climate vulnerability as the amount of evidence that climate change will negatively impact a population. We quantified climate vulnerability by scoring sensitivity (intrinsic characteristics of an organism that make it vulnerable) and exposure (the magnitude of climate change expected) for each taxon. Using the combined sensitivity and exposure scores as an index, we ranked 358 avian taxa, and classified 128 as vulnerable to climate change. Birds associated with wetlands had the largest representation on the list relative to other habitat groups. Of the 29 state or federally listed taxa, 21 were also classified as climate vulnerable, further raising their conservation concern. Integrating climate vulnerability and California's Bird Species of Special Concern list resulted in the addition of five taxa and an increase in priority rank for ten. Our process illustrates a simple, immediate action that can be taken to inform climate change adaptation strategies for wildlife

    Integrin-Specific Mechanoresponses to Compression and Extension Probed by Cylindrical Flat-Ended AFM Tips in Lung Cells

    Get PDF
    Cells from lung and other tissues are subjected to forces of opposing directions that are largely transmitted through integrin-mediated adhesions. How cells respond to force bidirectionality remains ill defined. To address this question, we nanofabricated flat-ended cylindrical Atomic Force Microscopy (AFM) tips with ∼1 µm2 cross-section area. Tips were uncoated or coated with either integrin-specific (RGD) or non-specific (RGE/BSA) molecules, brought into contact with lung epithelial cells or fibroblasts for 30 s to form focal adhesion precursors, and used to probe cell resistance to deformation in compression and extension. We found that cell resistance to compression was globally higher than to extension regardless of the tip coating. In contrast, both tip-cell adhesion strength and resistance to compression and extension were the highest when probed at integrin-specific adhesions. These integrin-specific mechanoresponses required an intact actin cytoskeleton, and were dependent on tyrosine phosphatases and Ca2+ signaling. Cell asymmetric mechanoresponse to compression and extension remained after 5 minutes of tip-cell adhesion, revealing that asymmetric resistance to force directionality is an intrinsic property of lung cells, as in most soft tissues. Our findings provide new insights on how lung cells probe the mechanochemical properties of the microenvironment, an important process for migration, repair and tissue homeostasis

    Systematic Two-Hybrid and Comparative Proteomic Analyses Reveal Novel Yeast Pre-mRNA Splicing Factors Connected to Prp19

    Get PDF
    Prp19 is the founding member of the NineTeen Complex, or NTC, which is a spliceosomal subcomplex essential for spliceosome activation. To define Prp19 connectivity and dynamic protein interactions within the spliceosome, we systematically queried the Saccharomyces cerevisiae proteome for Prp19 WD40 domain interaction partners by two-hybrid analysis. We report that in addition to S. cerevisiae Cwc2, the splicing factor Prp17 binds directly to the Prp19 WD40 domain in a 1∶1 ratio. Prp17 binds simultaneously with Cwc2 indicating that it is part of the core NTC complex. We also find that the previously uncharacterized protein Urn1 (Dre4 in Schizosaccharomyces pombe) directly interacts with Prp19, and that Dre4 is conditionally required for pre-mRNA splicing in S. pombe. S. pombe Dre4 and S. cerevisiae Urn1 co-purify U2, U5, and U6 snRNAs and multiple splicing factors, and dre4Δ and urn1Δ strains display numerous negative genetic interactions with known splicing mutants. The S. pombe Prp19-containing Dre4 complex co-purifies three previously uncharacterized proteins that participate in pre-mRNA splicing, likely before spliceosome activation. Our multi-faceted approach has revealed new low abundance splicing factors connected to NTC function, provides evidence for distinct Prp19 containing complexes, and underscores the role of the Prp19 WD40 domain as a splicing scaffold
    corecore