326 research outputs found

    Decreased body mass index in the preclinical stage of autosomal dominant Alzheimer’s disease

    Get PDF
    The relationship between body-mass index (BMI) and Alzheimer´s disease (AD) has been extensively investigated. However, BMI alterations in preclinical individuals with autosomal dominant AD (ADAD) have not yet been investigated. We analyzed cross-sectional data from 230 asymptomatic members of families with ADAD participating in the Dominantly Inherited Alzheimer Network (DIAN) study including 120 preclinical mutation carriers (MCs) and 110 asymptomatic non-carriers (NCs). Differences in BMI and their relation with cerebral amyloid load and episodic memory as a function of estimated years to symptom onset (EYO) were analyzed. Preclinical MCs showed significantly lower BMIs compared to NCs, starting 11.2 years before expected symptom onset. However, the BMI curves begun to diverge already at 17.8 years before expected symptom onset. Lower BMI in preclinical MCs was significantly associated with less years before estimated symptom onset, higher global Aβ brain burden, and with lower delayed total recall scores in the logical memory test. The study provides cross-sectional evidence that weight loss starts one to two decades before expected symptom onset of ADAD. Our findings point toward a link between the pathophysiology of ADAD and disturbance of weight control mechanisms. Longitudinal follow-up studies are warranted to investigate BMI changes over time

    Comparison of Pittsburgh compound B and florbetapir in cross-sectional and longitudinal studies.

    Get PDF
    IntroductionQuantitative in vivo measurement of brain amyloid burden is important for both research and clinical purposes. However, the existence of multiple imaging tracers presents challenges to the interpretation of such measurements. This study presents a direct comparison of Pittsburgh compound B-based and florbetapir-based amyloid imaging in the same participants from two independent cohorts using a crossover design.MethodsPittsburgh compound B and florbetapir amyloid PET imaging data from three different cohorts were analyzed using previously established pipelines to obtain global amyloid burden measurements. These measurements were converted to the Centiloid scale to allow fair comparison between the two tracers. The mean and inter-individual variability of the two tracers were compared using multivariate linear models both cross-sectionally and longitudinally.ResultsGlobal amyloid burden measured using the two tracers were strongly correlated in both cohorts. However, higher variability was observed when florbetapir was used as the imaging tracer. The variability may be partially caused by white matter signal as partial volume correction reduces the variability and improves the correlations between the two tracers. Amyloid burden measured using both tracers was found to be in association with clinical and psychometric measurements. Longitudinal comparison of the two tracers was also performed in similar but separate cohorts whose baseline amyloid load was considered elevated (i.e., amyloid positive). No significant difference was detected in the average annualized rate of change measurements made with these two tracers.DiscussionAlthough the amyloid burden measurements were quite similar using these two tracers as expected, difference was observable even after conversion into the Centiloid scale. Further investigation is warranted to identify optimal strategies to harmonize amyloid imaging data acquired using different tracers

    Validation of Serum Neurofilament Light Chain as a Biomarker of Parkinson's Disease Progression

    Get PDF
    Background: The objective of this study was to assess neurofilament light chain as a Parkinson’s disease biomarker. Methods: We quantified neurofilament light chain in 2 independent cohorts: (1) longitudinal cerebrospinal fluid samples from the longitudinal de novo Parkinson’s disease cohort and (2) a large longitudinal cohort with serum samples from Parkinson’s disease, other cognate/neurodegenerative disorders, healthy controls, prodromal conditions, and mutation carriers. Results: In the Parkinson’s Progression Marker Initiative cohort, mean baseline serum neurofilament light chain was higher in Parkinson’s disease patients (13 � 7.2 pg/mL) than in controls (12 � 6.7 pg/mL), P = 0.0336. Serum neurofilament light chain increased longitudinally in Parkinson’s disease patients versus controls (P < 0.01). Motor scores were positively associated with neurofilament light chain, whereas some cognitive scores showed a negative association. Conclusions: Neurofilament light chain in serum samples is increased in Parkinson’s disease patients versus healthy controls, increases over time and with age, and correlates with clinical measures of Parkinson’s disease severity. Although the specificity of neurofilament light chain for Parkinson’s disease is low, it is the first blood-based biomarker candidate that could support disease stratification of Parkinson’s disease versus other cognate/neurodegenerative disorders, track clinical progression, and possibly assess responsiveness to neuroprotective treatments. However, use of neurofilament light chain as a biomarker of response to neuroprotective interventions remains to be assessed

    Assessment of bone response to systemic therapy in an EORTC trial: preliminary experience with the use of collagen cross-link excretion

    Get PDF
    This study was designed to evaluate new bone resorption and tumour markers as possible alternatives to serial plain radiographs for the assessment of response to treatment. Thirty-seven patients with newly diagnosed bone metastases from breast cancer, randomized to receive oral pamidronate or placebo tablets in addition to anticancer treatment within the context of a multicentre EORTC trial, who were both assessable for radiographic response in bone and had serum and urine samples collected for more than 1 month were studied. The markers of bone metabolism measured included urinary calcium (uCa), hydroxyproline (hyp), the N-telopeptide cross-links of type I collagen (NTx) and total alkaline phosphatase. The tumour markers measured were CA15-3 and cancer-associated serum antigen (CASA). Before treatment, levels of Ntx, uCa and Hyp were elevated in 41%, 24% and 28% respectively, and CA15-3 and CASA increased in 69% and 50%. For assessment of response and identification of progression, Ntx was the most useful bone marker. All markers behaved similarly in no change (NC) and partial response (PR) patients. There was a significant difference (P ≤ 0.05) in Ntx levels (compared to baseline) at 1 and 4 months and in CA15-3/CASA at 4 months between patients with PR or NC and those with progressive disease (PD), and at 4 months between those with time to progression (TP) > 7 and those with TP ≤ 7 months. The diagnostic efficiency (DE) for prediction of PD following a > 50% increase in Ntx or CA15-3 was 78% and 62% respectively. An algorithm to predict response to therapy has been developed for future prospective evaluation

    Natriuretic Peptides and Assessment of Cardiovascular Disease Risk in Asymptomatic Persons

    Get PDF
    Current tools for cardiovascular disease (CVD) risk assessment in asymptomatic individuals are imperfect. Preventive measures aimed only at individuals deemed high risk by current algorithms neglect large numbers of low-risk and intermediate-risk individuals who are destined to develop CVD and who would benefit from early and aggressive treatment. Natriuretic peptides have the potential both to identify individuals at risk for future cardiovascular events and to help detect subclinical CVD. Choosing the appropriate subpopulation to target for natriuretic peptide testing will help maximize the performance and the cost effectiveness. The combined use of multiple risk markers, including biomarkers, genetic testing, and imaging or other noninvasive measures of risk, offers promise for further refining risk assessment algorithms. Recent studies have highlighted the utility of natriuretic peptides for preoperative risk stratification; however, cost effectiveness and outcomes studies are needed to affirm this and other uses of natriuretic peptides for cardiovascular risk assessment in asymptomatic individuals

    Blood-based biomarkers for Alzheimer disease: mapping the road to the clinic.

    Get PDF
    Biomarker discovery and development for clinical research, diagnostics and therapy monitoring in clinical trials have advanced rapidly in key areas of medicine - most notably, oncology and cardiovascular diseases - allowing rapid early detection and supporting the evolution of biomarker-guided, precision-medicine-based targeted therapies. In Alzheimer disease (AD), breakthroughs in biomarker identification and validation include cerebrospinal fluid and PET markers of amyloid-β and tau proteins, which are highly accurate in detecting the presence of AD-associated pathophysiological and neuropathological changes. However, the high cost, insufficient accessibility and/or invasiveness of these assays limit their use as viable first-line tools for detecting patterns of pathophysiology. Therefore, a multistage, tiered approach is needed, prioritizing development of an initial screen to exclude from these tests the high numbers of people with cognitive deficits who do not demonstrate evidence of underlying AD pathophysiology. This Review summarizes the efforts of an international working group that aimed to survey the current landscape of blood-based AD biomarkers and outlines operational steps for an effective academic-industry co-development pathway from identification and assay development to validation for clinical use.I recieved an honorarium from Roche Diagnostics for my participation in the advisory panel meeting leading to this pape

    Impact of renal impairment on atrial fibrillation: ESC-EHRA EORP-AF Long-Term General Registry

    Get PDF
    Background: Atrial fibrillation (AF) and renal impairment share a bidirectional relationship with important pathophysiological interactions. We evaluated the impact of renal impairment in a contemporary cohort of patients with AF. Methods: We utilised the ESC-EHRA EORP-AF Long-Term General Registry. Outcomes were analysed according to renal function by CKD-EPI equation. The primary endpoint was a composite of thromboembolism, major bleeding, acute coronary syndrome and all-cause death. Secondary endpoints were each of these separately including ischaemic stroke, haemorrhagic event, intracranial haemorrhage, cardiovascular death and hospital admission. Results: A total of 9306 patients were included. The distribution of patients with no, mild, moderate and severe renal impairment at baseline were 16.9%, 49.3%, 30% and 3.8%, respectively. AF patients with impaired renal function were older, more likely to be females, had worse cardiac imaging parameters and multiple comorbidities. Among patients with an indication for anticoagulation, prescription of these agents was reduced in those with severe renal impairment, p&nbsp;&lt;.001. Over 24&nbsp;months, impaired renal function was associated with significantly greater incidence of the primary composite outcome and all secondary outcomes. Multivariable Cox regression analysis demonstrated an inverse relationship between eGFR and the primary outcome (HR 1.07 [95% CI, 1.01–1.14] per 10&nbsp;ml/min/1.73&nbsp;m2 decrease), that was most notable in patients with eGFR &lt;30&nbsp;ml/min/1.73&nbsp;m2 (HR 2.21 [95% CI, 1.23–3.99] compared to eGFR ≥90&nbsp;ml/min/1.73&nbsp;m2). Conclusion: A significant proportion of patients with AF suffer from concomitant renal impairment which impacts their overall management. Furthermore, renal impairment is an independent predictor of major adverse events including thromboembolism, major bleeding, acute coronary syndrome and all-cause death in patients with AF
    corecore