7 research outputs found

    Natural killer (NK) cell-derived extracellular-vesicle shuttled microRNAs control T cell responses.

    Get PDF
    Natural killer (NK) cells recognize and kill target cells undergoing different types of stress. NK cells are also capable of modulating immune responses. In particular, they regulate T cell functions. Small RNA next-generation sequencing of resting and activated human NK cells and their secreted extracellular vesicles (EVs) led to the identification of a specific repertoire of NK-EV-associated microRNAs and their post-transcriptional modifications signature. Several microRNAs of NK-EVs, namely miR-10b-5p, miR-92a-3p, and miR-155-5p, specifically target molecules involved in Th1 responses. NK-EVs promote the downregulation of GATA3 mRNA in CD4+ T cells and subsequent TBX21 de-repression that leads to Th1 polarization and IFN-γ and IL-2 production. NK-EVs also have an effect on monocyte and moDCs (monocyte-derived dendritic cells) function, driving their activation and increased presentation and costimulatory functions. Nanoparticle-delivered NK-EV microRNAs partially recapitulate NK-EV effects in mice. Our results provide new insights on the immunomodulatory roles of NK-EVs that may help to improve their use as immunotherapeutic tools.This manuscript was funded by grants PDI-2020-120412RB-I00 and PDC2021- 121719-I00 (FS-M) and PID2020- 119352RB-I00 (AS) from the Spanish Ministry of Economy and Competitiveness; CAM (S2017/BMD3671-INFLAMUNE-CM) from the Comunidad de Madrid (FS-M). CIBERCV (CB16/11/00272) and BIOIMID PIE13/041 from the Instituto de Salud Carlos. The current research has received funding from 'la Caixa' Foundation under the project code HR17-00016. Grants from Ramón Areces Foundation 'Ciencias de la Vida y de la Salud' (XIX Concurso-2018) and from Ayuda Fundación BBVA y Equipo de Investigación Científica (BIOMEDICINA-2018) (to FSM). The CNIC is supported by the Ministerio de Ciencia, Innovacion y Universidades and the Pro-CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015–0505). IMDEA Nanociencia acknowledges support from the ‘Severo Ochoa’ Programme for Centres of Excellence in R&D (MINECO, CEX2020-001039-S). SGD is supported by a grant from the Spanish Ministry of Universities. Authors thank Dr Miguel Vicente-Manzanares for critical review and editing. We also thank Dr Francisco Urbano and Dr Covadonga Aguado for their support with EM (TEM facilities, Universidad Autónoma de Madrid).S

    Association of Early Progression Independent of Relapse Activity With Long-term Disability After a First Demyelinating Event in Multiple Sclerosis

    Get PDF
    This cohort study investigates the long-term outcomes of patients who develop progression independent of relapse activity after a first demyelinating event in multiple sclerosis. What are the long-term outcomes of patients developing progression independent of relapse activity (PIRA) after a first demyelinating event in multiple sclerosis? In this longitudinal cohort study including 1128 patients with a first demyelinating event in multiple sclerosis, presenting with PIRA was associated with significantly shorter times to developing severe disability compared with not presenting with PIRA. Patients presenting with PIRA within the first 5 years of multiple sclerosis had a significantly 26-fold greater risk of developing severe disability than patients whose first PIRA appeared late in the disease. Results suggest that presenting with PIRA after a first demyelinating event in multiple sclerosis is an ominous prognosis, especially if it occurs early in the disease course. Progression independent of relapse activity (PIRA) is the main event responsible for irreversible disability accumulation in relapsing multiple sclerosis (MS). To investigate clinical and neuroimaging predictors of PIRA at the time of the first demyelinating attack and factors associated with long-term clinical outcomes of people who present with PIRA. This cohort study, conducted from January 1, 1994, to July 31, 2021, included patients with a first demyelinating attack from multiple sclerosis; patients were recruited from 1 study center in Spain. Patients were excluded if they refused to participate, had alternative diagnoses, did not meet protocol requirements, had inconsistent demographic information, or had less than 3 clinical assessments. Exposures included (1) clinical and neuroimaging features at the first demyelinating attack and (2) presenting PIRA, ie, confirmed disability accumulation (CDA) in a free-relapse period at any time after symptom onset, within (vs after) the first 5 years of the disease (ie, early/late PIRA), and in the presence (vs absence) of new T2 lesions in the previous 2 years (ie, active/nonactive PIRA). Expanded Disability Status Scale (EDSS) yearly increase rates since the first attack and adjusted hazard ratios (HRs) for predictors of time to PIRA and time to EDSS 6.0. Of the 1128 patients (mean [SD] age, 32.1 [8.3] years; 781 female individuals [69.2%]) included in the study, 277 (25%) developed 1 or more PIRA events at a median (IQR) follow-up time of 7.2 (4.6-12.4) years (for first PIRA). Of all patients with PIRA, 86 of 277 (31%) developed early PIRA, and 73 of 144 (51%) developed active PIRA. Patients with PIRA were slightly older, had more brain lesions, and were more likely to have oligoclonal bands than those without PIRA. Older age at the first attack was the only predictor of PIRA (HR, 1.43; 95% CI, 1.23-1.65; P <.001 for each older decade). Patients with PIRA had steeper EDSS yearly increase rates (0.18; 95% CI, 0.16-0.20 vs 0.04; 95% CI, 0.02-0.05; P < .001) and an 8-fold greater risk of reaching EDSS 6.0 (HR, 7.93; 95% CI, 2.25-27.96; P = .001) than those without PIRA. Early PIRA had steeper EDSS yearly increase rates than late PIRA (0.31; 95% CI, 0.26-0.35 vs 0.13; 95% CI, 0.10-0.16; P < .001) and a 26-fold greater risk of reaching EDSS 6.0 from the first attack (HR, 26.21; 95% CI, 2.26-303.95; P = .009). Results of this cohort study suggest that for patients with multiple sclerosis, presenting with PIRA after a first demyelinating event was not uncommon and suggests an unfavorable long-term prognosis, especially if it occurs early in the disease course

    Deciphering multiple sclerosis disability with deep learning attention maps on clinical MRI

    Get PDF
    The application of convolutional neural networks (CNNs) to MRI data has emerged as a promising approach to achieving unprecedented levels of accuracy when predicting the course of neurological conditions, including multiple sclerosis, by means of extracting image features not detectable through conventional methods. Additionally, the study of CNN-derived attention maps, which indicate the most relevant anatomical features for CNN-based decisions, has the potential to uncover key disease mechanisms leading to disability accumulation. From a cohort of patients prospectively followed up after a first demyelinating attack, we selected those with T1-weighted and T2-FLAIR brain MRI sequences available for image analysis and a clinical assessment performed within the following six months (N = 319). Patients were divided into two groups according to expanded disability status scale (EDSS) score: ≥3.0 and < 3.0. A 3D-CNN model predicted the class using whole-brain MRI scans as input. A comparison with a logistic regression (LR) model using volumetric measurements as explanatory variables and a validation of the CNN model on an independent dataset with similar characteristics (N = 440) were also performed. The layer-wise relevance propagation method was used to obtain individual attention maps. The CNN model achieved a mean accuracy of 79% and proved to be superior to the equivalent LR-model (77%). Additionally, the model was successfully validated in the independent external cohort without any re-training (accuracy = 71%). Attention-map analyses revealed the predominant role of frontotemporal cortex and cerebellum for CNN decisions, suggesting that the mechanisms leading to disability accrual exceed the mere presence of brain lesions or atrophy and probably involve how damage is distributed in the central nervous system

    A single-dose strategy for immunization with live attenuated vaccines is an effective option before treatment initiation in multiple sclerosis patients

    Get PDF
    Multiple sclerosis; Infections; VaccinationEsclerosi múltiple; Infeccions; VacunacióEsclerosis múltiple; Infecciones; VacunaciónBackground: Mumps-Measles-Rubella (MMR) and Varicella zoster vaccines (VAR) are live attenuated vaccines, usually administered in a two-dose scheme at least 4 weeks apart. However, single-dose immunization schemes may also be effective and can reduce delays in immunosuppressive treatment initiation in patients with multiple sclerosis (pwMS) who need to be immunized. Objectives: To evaluate the immunogenicity of a single-dose attempt (SDA) versus the standard immunization scheme (SIS) with VAR and/or MMR in pwMS. Methods: Retrospective observational study in pwMS vaccinated against VAR and/or MMR. We compared seroprotection rates and antibody geometric mean titers (GMTs) between the two strategies. Results: Ninety-six patients were included. Thirty-one patients received VAR and 67 MMR. In the SDA group, the seroprotection rate was 66.7% (95% confidence interval (CI): 53.3–78.3) versus 97.2% (95% CI: 85.5–99.9) in the SIS (p < 0.001). For the seroprotected patients, GMTs were similar for both schemes. Conclusion: An SDA of VAR and/or MMR vaccines could be sufficient to protect almost two-thirds of patients. Testing immunogenicity after a single dose of VZ and/or MMR could be included in routine clinical practice to achieve rapid immunization.This study has been funded by Instituto de Salud Carlos III (ISCIII) through the project PI19/01606 and co-funded by the European Union and ECTRIMS clinical fellowship awarded to René Carvajal from 2021 to 2022

    Humoral and Cellular Responses to SARS-CoV-2 in Convalescent COVID-19 Patients With Multiple Sclerosis

    Get PDF
    Information about humoral and cellular responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and antibody persistence in convalescent (COVID-19) patients with multiple sclerosis (PwMS) is scarce. The objectives of this study were to investigate factors influencing humoral and cellular responses to SARS-CoV-2 and its persistence in convalescent COVID-19 PwMS. This is a retrospective study of confirmed COVID-19 convalescent PwMS identified between February 2020 and May 2021 by SARS-CoV-2 antibody testing. We examined relationships between demographics, MS characteristics, disease-modifying therapy (DMT), and humoral (immunoglobulin G against spike and nucleocapsid proteins) and cellular (interferon-gamma [IFN-γ]) responses to SARS-CoV-2. A total of 121 (83.45%) of 145 PwMS were seropositive, and 25/42 (59.5%) presented a cellular response up to 13.1 months after COVID-19. Anti-CD20-treated patients had lower antibody titers than those under other DMTs (p < 0.001), but severe COVID-19 and a longer time from last infusion increased the likelihood of producing a humoral response. IFN-γ levels did not differ among DMT. Five of 7 (71.4%) anti--CD20-treated seronegative patients had a cellular response. The humoral response persisted for more than 6 months in 41/56(81.13%) PwMS. In multivariate analysis, seropositivity decreased due to anti-CD20 therapy (OR 0.08 [95% CI 0.01-0.55]) and increased in males (OR 3.59 [1.02-12.68]), whereas the cellular response decreased in those with progressive disease (OR 0.04 [0.001-0.88]). No factors were associated with antibody persistence. Humoral and cellular responses to SARS-CoV-2 are present in COVID-19 convalescent PwMS up to 13.10 months after COVID-19. The humoral response decreases under anti-CD20 treatment, although the cellular response can be detected in anti-CD20-treated patients, even in the absence of antibodie

    X chromosome inactivation does not necessarily determine the severity of the phenotype in Rett syndrome patients

    No full text
    WOS: 000481590200024PubMed ID: 31427717Rett syndrome (RTT) is a severe neurological disorder usually caused by mutations in the MECP2 gene. Since the MECP2 gene is located on the X chromosome, X chromosome inactivation (XCI) could play a role in the wide range of phenotypic variation of RTT patients; however, classical methylation-based protocols to evaluate XCI could not determine whether the preferentially inactivated X chromosome carried the mutant or the wild-type allele. Therefore, we developed an allele-specific methylation-based assay to evaluate methylation at the loci of several recurrent MECP2 mutations. We analyzed the XCI patterns in the blood of 174 RTT patients, but we did not find a clear correlation between XCI and the clinical presentation. We also compared XCI in blood and brain cortex samples of two patients and found differences between XCI patterns in these tissues. However, RTT mainly being a neurological disease complicates the establishment of a correlation between the XCI in blood and the clinical presentation of the patients. Furthermore, we analyzed MECP2 transcript levels and found differences from the expected levels according to XCI. Many factors other than XCI could affect the RTT phenotype, which in combination could influence the clinical presentation of RTT patients to a greater extent than slight variations in the XCI pattern.Spanish Ministry of Health (Instituto de Salud Carlos III/FEDER) [PI15/01159]; Crowdfunding program PRECIPITA, from the Spanish Ministry of Health (Fundacion Espanola para la Ciencia y la Tecnologia); Catalan Association for Rett Syndrome; Fondobiorett; Mi Princesa RettWe thank all patients and their families who contributed to this study. The work was supported by grants from the Spanish Ministry of Health (Instituto de Salud Carlos III/FEDER, PI15/01159); Crowdfunding program PRECIPITA, from the Spanish Ministry of Health (Fundacion Espanola para la Ciencia y la Tecnologia); the Catalan Association for Rett Syndrome; Fondobiorett and Mi Princesa Rett
    corecore