6,958 research outputs found

    The Observations of Redshift Evolution in Large-Scale Environments (ORELSE) Survey. I. The Survey Design and First Results on CL 0023+0423 at z = 0.84 and RX J1821.6+6827 at z = 0.82

    Get PDF
    We present the Observations of Redshift Evolution in Large-Scale Environments (ORELSE) Survey, a systematic search for structure on scales greater than 10 h^(–1)_70 Mpc around 20 well-known clusters at redshifts of 0.6 < z < 1.3. The goal of the survey is to examine a statistical sample of dynamically active clusters and large-scale structures in order to quantify galaxy properties over the full range of local and global environments. We describe the survey design, the cluster sample, and our extensive observational data covering at least 25' around each target cluster. We use adaptively smoothed red galaxy density maps from our wide-field optical imaging to identify candidate groups/clusters and intermediate-density large-scale filaments/walls in each cluster field. Because photometric techniques (such as photometric redshifts, statistical overdensities, and richness estimates) can be highly uncertain, the crucial component of this survey is the unprecedented amount of spectroscopic coverage. We are using the wide-field, multiobject spectroscopic capabilities of the Deep Multiobject Imaging Spectrograph to obtain 100-200+ confirmed cluster members in each field. Our survey has already discovered the Cl 1604 supercluster at z ≈ 0.9, a structure which contains at least eight groups and clusters and spans 13 Mpc × 100 Mpc. Here, we present the results on the large-scale environments of two additional clusters, Cl 0023+0423 at z = 0.84 and RX J1821.6+6827 at z = 0.82, which highlight the diversity of global properties at these redshifts. The optically selected Cl 0023+0423 is a four-way group-group merger with constituent groups having measured velocity dispersions between 206 and 479 km s^–1. The galaxy population is dominated by blue, star-forming galaxies, with 80% of the confirmed members showing [O II] emission. The strength of the Hδ line in a composite spectrum of 138 members indicates a substantial contribution from recent starbursts to the overall galaxy population. In contrast, the X-ray-selected RX J1821.6+6827 is a largely isolated, massive cluster with a measured velocity dispersion of 926 ± 77 km s^(–1). The cluster exhibits a well-defined red sequence with a large quiescent galaxy population. The results from these two targets, along with preliminary findings on other ORELSE clusters, suggest that optical selection may be more effective than X-ray surveys at detecting less-evolved, dynamically active systems at these redshifts

    Simulation model of erosion and deposition on a barchan dune

    Get PDF
    Erosion and deposition over a barchan dune near the Salton Sea, California, are modeled by bookkeeping the quantity of sand in saltation following streamlines of transport. Field observations of near surface wind velocity and direction plus supplemental measurements of the velocity distribution over a scale model of the dune are combined as input to Bagnold type sand transport formulas corrected for slope effects. A unidirectional wind is assumed. The resulting patterns of erosion and deposition compare closely with those observed in the field and those predicted by the assumption of equilibrium (downwind translation of the dune without change in size or geometry). Discrepancies between the simulated results and the observed or predicted erosional patterns appear to be largely due to natural fluctuations in the wind direction. The shape of barchan dunes is a function of grain size, velocity, degree of saturation of the oncoming flow, and the variability in the direction of the oncoming wind. The size of the barchans may be controlled by natural atmospheric scales, by the age of the dunes, or by the upwind roughness. The upwind roughness can be controlled by fixed elements or by sand in the saltation. In the latter case, dune scale is determined by grain size and wind velocity

    A two-cocycle on the group of symplectic diffeomorphisms

    Get PDF
    We investigate a two-cocycle on the group of symplectic diffeomorphisms of an exact symplectic manifolds defined by Ismagilov, Losik, and Michor and investigate its properties. We provide both vanishing and non-vanishing results and applications to foliated symplectic bundles and to Hamiltonian actions of finitely generated groups.Comment: 16 pages, no figure

    Care home versus hospital and own home environments for rehabilitation of older people

    Get PDF
    Background Rehabilitation for older people has acquired an increasingly important profile for both policy‐makers and service providers within health and social care agencies. This has generated an increased interest in the use of alternative care environments including care home environments. Yet, there appears to be limited evidence on which to base decisions. This review is the first update of the Cochrane review which was published in 2003. Objectives To compare the effects of care home environments (e.g. nursing home, residential care home and nursing facilities) versus hospital environments and own home environments in the rehabilitation of older people. Search methods We searched the Cochrane Effective Practice and Organisation of Care Specialised Register and Pending Folder, MEDLINE (1950 to March Week 3 2007), EMBASE (1980 to 2007 Week 13), CINAHL (1982 to March, Week 4, 2007), other databases and reference lists of relevant review articles were additionally reviewed. Date of most recent search: March 2007. Selection criteria Randomised controlled trials (RCTs), controlled clinical trials (CCTs), controlled before and after studies (CBAs) and interrupted time series (ITS) that compared rehabilitation outcomes for persons 60 years or older who received rehabilitation whilst residing in a care home with those who received rehabilitation in hospital or own home environments. Data collection and analysis Two review authors independently assessed trial quality and extracted data. Main results In this update, 8365 references were retrieved. Of these, 339 abstracts were independently assessed by 2 review authors, and 56 studies and 5 review articles were subsequently obtained. Full text papers were independently assessed by two or three review authors and none of these met inclusion criteria. Authors' conclusions There is insufficient evidence to compare the effects of care home environments versus hospital environments or own home environments on older persons rehabilitation outcomes. Although the authors acknowledge that absence of effect is not no effect. There are three main reasons; the first is that the description and specification of the environment is often not clear; secondly, the components of the rehabilitation system within the given environments are not adequately specified and; thirdly, when the components are clearly specified they demonstrate that the control and intervention sites are not comparable with respect to the methodological criteria specified by Cochrane EPOC group. The combined effect of these factors resulted in the comparability between intervention and control groups being very weak

    Preliminary Results from the Caltech Core-Collapse Project (CCCP)

    Get PDF
    We present preliminary results from the Caltech Core-Collapse Project (CCCP), a large observational program focused on the study of core-collapse SNe. Uniform, high-quality NIR and optical photometry and multi-epoch optical spectroscopy have been obtained using the 200'' Hale and robotic 60'' telescopes at Palomar, for a sample of 50 nearby core-collapse SNe. The combination of both well-sampled optical light curves and multi-epoch spectroscopy will enable spectroscopically and photometrically based subtype definitions to be disentangled from each other. Multi-epoch spectroscopy is crucial to identify transition events that evolve among subtypes with time. The CCCP SN sample includes every core-collapse SN discovered between July 2004 and September 2005 that was visible from Palomar, found shortly (< 30 days) after explosion (based on available pre-explosion photometry), and closer than ~120 Mpc. This complete sample allows, for the first time, a study of core-collapse SNe as a population, rather than as individual events. Here, we present the full CCCP SN sample and show exemplary data collected. We analyze available data for the first ~1/3 of the sample and determine the subtypes of 13 SNe II based on both light curve shapes and spectroscopy. We discuss the relative SN II subtype fractions in the context of associating SN subtypes with specific progenitor stars.Comment: To appear in the proceedings of the meeting "The Multicoloured Landscape of Compact Objects and their Explosive Origins", Cefalu, Italy, June 2006, to be published by AIP, Eds. L. Burderi et a

    The Assembly of the Red Sequence at z ~ 1: The Color and Spectral Properties of Galaxies in the Cl1604 Supercluster

    Get PDF
    We investigate the properties of the 525 spectroscopically confirmed members of the Cl1604 supercluster at z ~ 0.9 as part of the Observations of Redshift Evolution in Large Scale Environments survey. In particular, we focus on the photometric, stellar mass, morphological, and spectral properties of the 305 member galaxies of the eight clusters and groups that comprise the Cl1604 supercluster. Using an extensive Keck Low-Resolution Imaging Spectrometer (LRIS)/DEep Imaging Multi-Object Spectrograph (DEIMOS) spectroscopic database in conjunction with ten-band ground-based, Spitzer, and Hubble Space Telescope imaging, we investigate the buildup of the red sequence in groups and clusters at high redshift. Nearly all of the brightest and most massive red-sequence galaxies present in the supercluster environment are found to lie within the bounds of the cluster and group systems, with a surprisingly large number of such galaxies present in low-mass group systems. Despite the prevalence of these red-sequence galaxies, we find that the average cluster galaxy has a spectrum indicative of a star-forming galaxy, with a star formation rate between those of z ~ 1 field galaxies and moderate-redshift cluster galaxies. The average group galaxy is even more active, exhibiting spectral properties indicative of a starburst. The presence of massive, red galaxies and the high fraction of starbursting galaxies present in the group environment suggest that significant processing is occurring in group environments at z ~ 1 and earlier. There is a deficit of low-luminosity red-sequence galaxies in all Cl1604 clusters and groups, suggesting that such galaxies transition to the red sequence at later times. Extremely massive (~10^(12)M_☉) red-sequence galaxies routinely observed in rich clusters at z ~ 0 are also absent from the Cl1604 clusters and groups. We suggest that such galaxies form at later times through merging processes. There are significant populations of transition galaxies at intermediate stellar masses (log(M_*)=10.25-10.75) present in the group and cluster environments, suggesting that this range is important for the buildup of the red-sequence mass function at z ~ 1. Through a comparison of the transitional populations present in the Cl1604 cluster and group systems, we find evidence that massive blue-cloud galaxies are quenched earliest in the most dynamically relaxed systems and at progressively later times in dynamically unrelaxed systems

    Study of intermixing in a GaAs/AlGaAs quantum-well structure using doped spin-on silica layers

    Get PDF
    The effect of two different dopants, P and Ga, in spin-on glass (SOG) films on impurity-free vacancy disordering (IFVD) in GaAs/AlGaAs quantum-well structures has been investigated. It is observed that by varying the annealing and baking temperatures, P-doped SOG films created a similar amount of intermixing as the undoped SOG films. This is different from the results of other studies of P-doped SiO₂ and is ascribed to the low doping concentration of P, indicating that the doping concentration of P in the SiO₂ layer is one of the key parameters that may control intermixing. On the other hand, for all the samples encapsulated with Ga-doped SOG layers, significant suppression of the intermixing was observed, making them very promising candidates with which to achieve the selective-area defect engineering that is required for any successful application of IFVD.One of the authors (H.H.T.) acknowledges a fellowship awarded to him by the Australian Research Council

    The Origin of [O II] Emission in Recently Quenched Active Galaxy Nucleus Hosts

    Get PDF
    We have employed emission-line diagnostics derived from DEIMOS and NIRSPEC spectroscopy to determine the origin of the [O II] emission line observed in six active galactic nucleus (AGN) hosts at z ~ 0.9. These galaxies are a subsample of AGN hosts detected in the Cl1604 supercluster that exhibit strong Balmer absorption lines in their spectra and appear to be in a post-starburst or post-quenched phase, if not for their [O II] emission. Examining the flux ratio of the [N II] to Hα lines, we find that in five of the six hosts the dominant source of ionizing flux is AGN continuum emission. Furthermore, we find that four of the six galaxies have over twice the [O II] line luminosity that could be generated by star formation alone given their Hα line luminosities. This strongly suggests that AGN-excited narrow-line emission is contaminating the [O II] line flux. A comparison of star formation rates calculated from extinction-corrected [O II] and Hα line luminosities indicates that the former yields a five-fold overestimate of the current activity in these galaxies. Our findings reveal the [O II] line to be a poor indicator of star formation activity in a majority of these moderate-luminosity Seyferts. This result bolsters our previous findings that an increased fraction of AGN at high redshifts is hosted by galaxies in a post-starburst phase. The relatively high fraction of AGN hosts in the Cl1604 supercluster that show signs of recently truncated star formation activity may suggest that AGN feedback plays an increasingly important role in suppressing ongoing activity in large-scale structures at high redshift

    The Violent Youth of Bright and Massive Cluster Galaxies and their Maturation over 7 Billion Years

    Get PDF
    In this study we investigate the formation and evolution mechanisms of the brightest cluster galaxies (BCGs) over cosmic time. At high redshift (z0.9z\sim0.9), we selected BCGs and most massive cluster galaxies (MMCGs) from the Cl1604 supercluster and compared them to low-redshift (z0.1z\sim0.1) counterparts drawn from the MCXC meta-catalog, supplemented by SDSS imaging and spectroscopy. We observed striking differences in the morphological, color, spectral, and stellar mass properties of the BCGs/MMCGs in the two samples. High-redshift BCGs/MMCGs were, in many cases, star-forming, late-type galaxies, with blue broadband colors, properties largely absent amongst the low-redshift BCGs/MMCGs. The stellar mass of BCGs was found to increase by an average factor of 2.51±0.712.51\pm0.71 from z0.9z\sim0.9 to z0.1z\sim0.1. Through this and other comparisons we conclude that a combination of major merging (mainly wet or mixed) and \emph{in situ} star formation are the main mechanisms which build stellar mass in BCGs/MMCGs. The stellar mass growth of the BCGs/MMCGs also appears to grow in lockstep with both the stellar baryonic and total mass of the cluster. Additionally, BCGs/MMCGs were found to grow in size, on average, a factor of 3\sim3, while their average S\'ersic index increased by \sim0.45 from z0.9z\sim0.9 to z0.1z\sim0.1, also supporting a scenario involving major merging, though some adiabatic expansion is required. These observational results are compared to both models and simulations to further explore the implications on processes which shape and evolve BCGs/MMCGs over the past \sim7 Gyr.Comment: Accepted for publication in MNRA
    corecore