33 research outputs found

    IPC Quick Start Guide:IPC programming for Inspect-X

    Get PDF

    An Underlying Asymmetry within Particle-size Segregation

    Full text link
    We experimentally study particle scale dynamics during segregation of a bidisperse mixture under oscillatory shear. Large and small particles show an underlying asymmetry that is dependent on the local particle concentration, with small particles segregating faster in regions of many large particles and large particles segregating slower in regions of many small particles. We quantify the asymmetry on bulk and particle scales, and capture it theoretically. This gives new physical insight into segregation and reveals a similarity with sedimentation, traffic flow and particle diffusion

    Understanding the agglomerate crystallisation of hexamine through X-ray microscopy and crystallographic modelling

    Get PDF
    © 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/The detailed molecular-scale mechanism of the growth of organic crystals underpins a diversity of phenomena, such as the isolation and purification of high-quality materials for the pharmaceutical and fine chemical sectors. Recent advances in X-ray Microscopy (XRM) and complementary diffraction contrast tomography (DCT) have enabled the detailed characterisation of the micro-structure of hexamine agglomerates. Detailed XRM analysis of the growth history and micro-structure of such agglomerates reveals a highly orientated epitaxial inter-relationship between their constituent micro-crystallites. This is found to be consistent with a secondary nucleation growth mechanism associated with re-growth at the 3-fold corner sites within the crystals’ dominant {1 1 0} dodecahedral morphology. The agglomeration appears to heal upon further growth as the aligned agglomerated micro-crystals connect and fuse together but, in doing so, pockets of inter-crystallite mother liquor become trapped forming a symmetric pattern of solvent inclusions. The mechanistic origin of this phenomenon is rationalised with respect to historical data together with an analysis of the solid-state chemistry of the compound through the development of a ‘snow flake’ model. The latter draws upon hexamine's propensity for edge growth instabilities with increasing crystal size as well as its tendency for unstable growth at the facet corners along the 〈1 1 1〉 directions, a situation compounded by the lack of growth-promoting dislocations at the centers of the {1 1 0} habit surfaces. The agglomerative mechanism presented here could apply to other high symmetry crystal systems, particularly those whose crystal structures involve centred Bravais lattices and where the dominant inter-molecular interactions are angled towards the facet edges.Peer reviewe

    IPC Quick Start Guide: IPC programming for Inspect-X

    No full text
    corecore