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Dense flows of grains are commonplace throughout natural and industrial envi-
ronments, from snow-avalanches down the sides of mountains to flows of cereal
down chutes as it is transported from one part of a factory to another. A ubiqui-
tous feature in all of these flows is their ability to separate the different grain types
when shaken, stirred, sheared or vibrated. Many flows are sheared through grav-
ity and these flows are particularly efficient at segregating particles based on their
size, with small particles percolating to the bottom of the flow and large particles
collecting at the top.

Within this mechanism, an asymmetry between the large and small particles has
been observed, with small particles percolating downwards through many large
particles at a faster rate than large particles rise upwards through many small parti-
cles. This alternative format thesis presents a revised continuum model for segrega-
tion of a bidisperse mixture that can account for this asymmetry. A general class of
asymmetric segregation flux functions is introduced that gives rise to asymmetric
velocities between the large and small grains. Exact solutions for segregation down
an inclined chute, with homogenous and normally graded inflow conditions, show
that the asymmetry can significantly enhance the distance for complete segregation.

Experiments performed using a classical shear-box with refractive index matched
scanning are able to quantify the asymmetry between large and small particles on
both bulk and particle scales. The dynamics of a single small particle indicate that
it not only falls down faster than a single large particle rises, but that it also exhibits
a step-like motion compared to the smooth ascent of the large grain. This points
towards an underlying asymmetry between the different sized constituents. The
relationship between the segregation-time and the volume fraction of small grains
is analysed, and solutions presented for the steady-state balance between segrega-
tion and diffusive remixing. These help to show the good agreement between the
asymmetric model and experimental data.

Segregation at the front of natural avalanches produces a recirculation zone,
known as a ‘breaking size-segregation wave’, in which large particles are initially
segregated upwards, sheared towards the front of the flow, and overrun before be-
ing resegregated again. Solutions for the structure of this recirculation zone are
derived using the asymmetric flux model, revealing a novel ‘lens-tail’ structure.
Critically, it is seen that a few large particles starting close to the bottom of the flow
are swept a long way upstream and take a very long time to recirculate.

The breaking size-segregation waves highlight the important interplay between
segregation and the bulk velocity field. The properties of flowing monodisperse
grains are explored through experiments on a cone that produce a beautiful radial
fingering pattern. Equations developed in a conical coordinate system reproduce
the measured linear relationship between fingering radius and initial flux, whilst
also predicting the slowing and thinning dynamics of the flow. Overall, these re-
sults illustrate the complex nature of the granular rheology and provide perspec-
tives for future modelling of segregation in dense granular flows.



5

DECLARATION

No portion of the work referred to in the thesis has

been submitted in support of an application for an-

other degree or qualification of this or any other uni-

versity or other institute of learning.



6

COPYRIGHT STATEMENT

i. The author of this thesis (including any appendices and/or schedules to this the-

sis) owns certain copyright or related rights in it (the “Copyright”) and s/he has

given The University of Manchester certain rights to use such Copyright, includ-

ing for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic

copy, may be made only in accordance with the Copyright, Designs and Patents

Act 1988 (as amended) and regulations issued under it or, where appropriate,

in accordance with licensing agreements which the University has from time to

time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other in-

tellectual property (the “Intellectual Property”) and any reproductions of copy-

right works in the thesis, for example graphs and tables (“Reproductions”), which

may be described in this thesis, may not be owned by the author and may be

owned by third parties. Such Intellectual Property and Reproductions cannot

and must not be made available for use without the prior written permission of

the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and

commercialisation of this thesis, the Copyright and any Intellectual Property

and/or Reproductions described in it may take place is available in the Uni-

versity IP Policy1 in any relevant Thesis restriction declarations deposited in the

University Library, The University Library’s regulations2 and in The University’s

Policy on Presentation of Theses.

1http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
2http://www.manchester.ac.uk/library/about/regulations

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://www.manchester.ac.uk/library/about/regulations


7

ACKNOWLEDGEMENTS

I would like to thank my supervisor Professor Nico Gray for providing me with
many of the problems featured in this thesis, and helping me to draw the work
together in suitable publications. I would also like to thank my research group
and collaborators, in particular Kasper van der Vaart, Anthony Thornton, Sylvain
Viroulet, James Baker, Pete Kokelaar and Chris Johnson who have not only pro-
vided valuable additional scientific input to the publications, but have also been
a source of many enlightening and illuminating discussions and moral support. I
am also grateful for the technical support provided by Paul Tipler, David Chorlton,
Dave Haigh, Malcolm Walker and Jonathan Hird, who have helped to design and
build the experiments that I have used during the course of my PhD. Apart from
the beautifully constructed cone that features in chapter 5, there were many other
experiments that do not feature explicitly in this thesis, but were instrumental in
helping shape my knowledge of the subject.

I would like to thank my examiners Dr. Lydie Staron and Dr. Raphael Assier for
a thoroughly enjoyable viva. It was a pleasure and a joy discussing my work with
them. I very much enjoyed the experience, and I hope that they also gained some-
thing from the scientific discussion.

Claire Hughes, the manager of Manchester Doctoral College, has been an immense
source of support throughout the entire duration of my PhD studies. Not only has
she been a willing listener to many of my problems, but she provided a platform
for me to implement many activities related to student experience on a University
scale. Organising the Postgraduate Summer Research Showcase, and other activi-
ties have been a constructive channel for my energy, and have allowed me to remain
refreshed and focused on my research. I do not think I would have gotten this far if
it were not for Claire.

My friends and colleagues within the University and outside have also supported
me and backed me when I was struggling for motivation or feeling despondent.
Out of the many names I could give, I would like to give a special mention to Grace
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1. INTRODUCTION

1.1 Context

When many individual grains act in a collective manner, they are said to be a gran-

ular material with a rich and wonderful diversity of behaviour. Granular media

occur on a vast range of scales, from 100µm powders to ice-belts in Saturns rings

that span hundreds of kilometres in size (fig. 1.1). Although the individual particles

are rigid solids, acting together they can behave like solids, liquids or gases, with

their own unique characteristics (Jaeger et al., 1996). Granular media have shaped,

and continue to shape, the physical landscape in which we live, from desert sand

dunes to asteroids and interplanetary aggregates. As well as providing fascination

for generation after generation, granular materials are also inter-twinned with the

progress and development of mankind. Engineers as long ago as the ancient Egyp-

tians recognised the special properties of sand as a granular material, and utilised

these properties to move large, heavy obelisks into upright positions (Standelmann,

1988). As shown in figure 1.2, a temporary pit was constructed that was initially

filled with sand. This sand acted like a solid, and supported the weight of the

obelisk as it was moved horizontally over the pit. An orifice at the bottom of the

pit was then opened up, allowing the sand to flow out of the pit under gravity. The

sand continued to support the weight of the obelisk as it flowed, but as the pit emp-

tied, the obelisk was slowly lowered into its upright position. The temporary side

walls could then be removed, leaving the obelisk standing.

One of the special properties of granular materials is their natural ability to

separate different particle types when agitated through shaking, stirring, shearing

or vibrating. This property is very easy to observe, as simply shaking a box of

muesli quickly sorts the larger nuts to the top (fig. 1.3, Rosato et al., 1987). This
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(a)

(b)

1 cm

Figure 1.1: Granular media occur on a vast range of scales, from piles of 400–700µm
black coloured aquarium sand (a) to ice-belts in Saturns rings that span hundreds
of kilometres in size (b). The small jet in (a) continually adds mass to the surface
of the sand-pile, causing it to become unstable. This triggers a thin dense granular
flow on the surface of the sand pile, which can be seen on the right hand side with
the blurred region highlighting the motion of the grains. The white bar indicates
the scale of 1 cm. The photo in (b) is courtesy of NASA.



13

(a) (b) (c)

Figure 1.2: Ancient Egyptian engineers used granular materials to move large,
heavy obelisks into position. (a) A large, temporary pit was constructed, which
was filled with sand. The obelisk was moved to the top of the pit on a gently in-
clined plane using rope systems. The sand in the pit acted as a solid and supported
the weight of the obelisk. (b) An orifice at the bottom of the pit was then opened,
allowing the sand to drain out under gravity. The sand continued to support the
weight of the obelisk, but as the amount of sand in the pit reduced, the obelisk was
gently lowered into position. (c) Finally, once the sand drained away, the temporary
pit was removed, leaving the obelisk standing in its upright position.

natural segregation has also been utilised throughout man’s history to sort useful

grains from stones, and even to sort potatoes from soil (Aranson & Tsimring, 2008).

Mining industries also designed special devices to maximise the un-mixing of the

components, so that different minerals could be easily separated (McClenaghan,

2011). However, the ubiquitous nature of the segregation process means that it

also occurs in many situations where it is undesirable (Train, 1960; Johanson, 1978).

Granular materials are the second most manipulated material in industry (after wa-

ter), and are encountered in chemical and pharmaceutical engineering, agriculture,

food-processing and construction industries to name but a few (Duran, 1999). The

UK production of granular construction aggregates alone was almost 195 million

tonnes in 2013, at a value of £3.3 billion (Bide et al., 2014). Many of these indus-

tries require a completely homogeneous mixing; Even small separation of the con-

stituent grains can critically degrade the product quality, leading to huge economic

losses. As a consequence, understanding segregation has been the subject of study

in a number of industrial fields for many years (e.g. Dyer, 1929; Maitra & Coulson,

1948; Lacey, 1954; Bourne, 1964; Olsen & Rippie, 1964; Rippie et al., 1964; Rogers &

Clements, 1972; Williams, 1968, 1976).

Segregation is a complex phenomena that is dependent on many factors. Dif-

ferences in particle size, shape, density, surface roughness, or frictional properties
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Figure 1.3: The natural ability of granular materials to segregate, i.e. separate their
constituents is readily observable with a box of muesli. Simply shaking the box
quickly sorts the larger nuts, fruit and raisins to the top.

can all cause separation, whilst the energy input can come through shaking, vibrat-

ing or shearing. Dense granular flows (GDR Midi, 2004) are often sheared under

gravity, and are very efficient at segregating different sized particles in their thin

liquid-like flows. These flows occur in many industrial environments, for example

in thin layers at the free-surface layers of rotating mixer drums (Nityanand et al.,

1986; Shinbrot & Muzzio, 2000), during the filling of silos (Schulze, 2008; Cellai

et al., 2012), or when grains are transported through chutes and hoppers (Khakhar

et al., 1999). However, dense flows of grains are also commonplace in natural envi-

ronments where they take the form of snow avalanches (Bartelt & McArdell, 2009;

McElwaine & Nishimura, 2000), debris flows (Iverson, 1997) and subaqueous grain

flows (Dingler & Anima, 1987). Natural granular flows can often be on the scale of

several kilometres, compared to flows on the scale of several meters in industrial en-

vironments. Despite the larger scale, these flows still experience segregation, with

many deposits displaying a grading (layering) of the particle sizes (e.g. Schminck,

1967; Hunter, 1985; Hunter & Kocurek, 1986; Cas & Wright, 1987). As the granular

flows sort the larger grains towards the top, in a similar manner to the box of muesli,

many of these deposits report ‘reverse-grading’ with an upward coarsening of the
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(a) (b)

A

B

C

Figure 1.4: Segregation in natural geophysical granular flows allows large particles
to be sheared towards the front, where they accumulate and form a resistive margin
(C). This front is unstable, and can break into a series of channels that have large-
particle levees (A) lined with fine particles (B). (a) All of these features can be seen
in Pumiceous pyroclastic flow deposits from Mount St. Helens, 1980. Photograph
courtesy of Dan Miller and USGS. (b) Laboratory experiments using a mixture of
white 75 − 150µm ballotini and 350µm carborundum flowing over a fixed base of
green 750 − 1000µm glass beads readily produces the same features, except on a
much smaller length scale to the geophysical flows. The channel in the centre of the
flow deposits in part (a) is 10 m wide, whilst each of the channels produced in the
laboratory experiments in (b) is approximately 1.5 cm wide.

particle-size distribution (e.g. Fisher & Mattinson, 1968; Middleton, 1970). How-

ever, the coarser grains are often sheared to the front of the flow, and so deposits

also display a lateral grading in which the particle-size distribution coarsens down-

stream (e.g. Costa & Williams, 1984; Middleton & Hampton, 1976; Sohn & Chough,

1993). The accumulation of coarse grains at the front creates a resistive margin,

which is unstable and can break into a series of finger-like channels (Pouliquen

et al., 1997; Pouliquen & Vallance, 1999; Woodhouse et al., 2012). Such channels are

evident in the Pumiceous pyroclastic flow deposits from Mount St. Helens 1980

pictured in figure 1.4(a), but can also be reproduced easily in the laboratory experi-

ments shown in figure 1.4(b). Despite the different length scales, all of the channels

exhibit coarse-grained levees (Pierson, 1986; Johnson et al., 2012), which can also be

lined with less frictional fine material (Kokelaar et al., 2014). These features allow

the flow to run-out further at higher velocities, increasing the potential destructive

capabilities of the avalanche.

Understanding and modelling the segregation within densely flowing granular

materials is thus of great importance for both industrial and geophysical contexts,

and is the subject of this thesis. The remainder of this introduction overviews some
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basic concepts of dense granular flows, provides a short summary of previous work

on modelling size-segregation and outlines the problem for the thesis.

1.2 Dense granular flows

Many flows of grains, such as flows through hoppers or surface avalanches inside

rotating drums are considered to be dense granular flows since they have a high

solids volume fraction 0.5 < ν < 0.65 (e.g. Silbert et al., 2001; Kumaran, 2006, 2008).

The individual grains interact through collisions and friction, with transient force

chains that act over short distances. These dense flows exhibit many properties

of traditional liquids and can be described using continuum quantities such as the

local density ρ(x, t), the local velocity u(x, t), the local pressure p(x, t) and the lo-

cal deviatoric stress τ (x, t). These continuum quantities can be constructed from

discrete particles through the ‘coarse-graining’ technique (Goldhirsch, 2010; Wein-

hart et al., 2013), which uses a continuum function to smooth over the effects of

individual grains. This smoothing operation helps to overcome the problem that

the length-scale of the grains in a granular system can be of the same order, or even

larger than the suitable averaging lengthscale, whilst also often being similar orders

of magnitude in size to the size of the system (Batchelor, 1967).

The kinematic quantities are related through mass and momentum conservation

∂ρ

∂t
+∇⋅(ρu) = 0, (1.1)

∂

∂t
(ρu) +∇⋅(ρu⊗u) = −∇p +∇⋅τ + ρg, (1.2)

where ∇ is the vector differential operator, ⊗ is the dyadic product and g is the

gravitational acceleration vector. It is the constitutive law that links the deviatoric

stress τ to other dynamic variables which characterises the ‘liquid-like’ flow; the

specific form for dense granular flows comes from the µ(I)-rheology (GDR Midi,

2004; Jop et al., 2005, 2006) with a pressure and strain-rate dependence

τ = µ(I)p D

∥D∥
. (1.3)

The strain rate tensor D is defined as

D = 1

2
(∇u +∇uT) , (1.4)
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with superscript T representing the transpose and ∥D∥ =
√

1
2trD2. The final relation

is the basal friction law (Jop et al., 2005; Pouliquen et al., 2006)

µ(I) = µ1 +
µ2 − µ1

I0/I + 1
, (1.5)

with I the non-dimensional inertial number and I0 a constant

I = 2∥D∥d√
p/ρ∗

, I0 =
5βd

2L
√
ν
. (1.6a,b)

Here, d is the diameter of the grains, ν is the solids volume fraction, β is an empirical

constant, and L is an empirical length scale. Angles µ1 = tan ζ1 and µ2 = tan ζ2 are

related to the minimum and maximum slope inclinations for which steady uniform

flow is possible (Forterre & Pouliquen, 2008). The lower angle ζ1 is the angle at

which the granular material starts to flow, whilst the upper angle ζ2 is the angle

above which the material will continually accelerate. In between these angles, the

flow down an inclined plane has a constant steady velocity and a uniform height.

For each inclination angle ζ ∈ (ζ1, ζ2), ζ1 and ζ2 also define a critical height hstop(ζ)

at which material will stop flowing (Pouliquen, 1999). In addition to ζ1 and ζ2, a

third angle ζ3 helps to define a second critical height hstart(ζ) which any stationary

material must reach before it can be mobilised again (Pouliquen & Forterre, 2002).

The five quantities β, L , ζ1, ζ2 and ζ3 determine all of the basal frictional properties,

and may be empirically determined for any grains flowing over a particular base.

The µ(I)-rheology has been successfully used to model several different dense

granular flow regimes, for example: surface velocity profiles for steady uniform

chute flows (Jop et al., 2006), granular Kapitza (Forterre, 2006), granular column

collapses (Lagrée et al., 2011), and the discharge of silos (Staron et al., 2012, 2013,

2014). Adaptations have also been made to account for dependence on the solids

volume fraction (Pouliquen et al., 2006), dilute flows (Jenkins, 2006) and granular

elasticity (Kamrin, 2010). A recent depth-integrated version of the µ(I) rheology

(Gray & Edwards, 2014; Baker et al., 2016) was also shown to predict the dynam-

ics of roll-wave instabilities and erosion-deposition waves (Razis et al., 2014; Ed-

wards & Gray, 2014). Despite this significant progress, the equations still remain

mathematically ill-posed at both low and high inertial numbers (Barker et al., 2015).

Mathematical ill-posed problems are defined as those which are (Hadamard) un-

stable to short wavelength perturbations (Hadamard, 1922; Joseph & Saut, 1990).
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These short wavelengths exhibit infinite growth rates, and so no mathematical so-

lutions can be found. Numerically integrating the ill-posed equations may produce

reasonably looking results, but they will change as the numerical grid is refined.

Whilst, the equations are well-posed at intermediate values of the inertial number,

10−3 ≲ I ≲ 10−1 corresponding to the the dense flowing regime, problems occur at

high values of I > 10−1 where the flow becomes dilute and for quasi-static flows at

low I < 10−3. Even so-called simple flows through a silo or within a rotating drum

contain regions of high and low inertial number alongside densely flowing mate-

rial, and so it is important to find a modified formulation that yields well-posed

behaviour at all inertial numbers. Models based around kinetic theory of gases are

well developed for dilute flows (e.g. Jenkins & Savage, 1983; Campbell, 1990), and

Jenkins (2006) has worked on using these models to regularise the µ(I) rheology at

the transition towards dilute flows at high inertial numbers. Non-local effects, such

as the dependence on the local volume fraction, are also important for quasi-static

flows at low inertial numbers, and attempts have been made to use these ideas to

regularise the rheology in this limit (Pouliquen & Forterre, 2009). The complex na-

ture of these dense granular flows continues to reveal new behaviour, and chapter 5

presents some novel experiments that demonstrate how the rheology can give rise

to a beautiful radial instability.

Although there has been an extensive amount of work developing the µ(I) rhe-

ology for monodisperse flows, there have only been limited attempts to develop a

similar formulation for flows containing multiple grain types. Rognon et al. (2007)

suggested an inertial number Id̄ for bidisperse flows containing two grain sizes

based upon the average local grain size d̄

Id̄ =
2∥D∥d̄√
p/ρ∗

. (1.7)

The average local grain diameter d̄ is the mean of the small particle diameter ds and

the large particle diameter dl, weighted by the solids volume fractions of small and

large particles, νs(z) and νl(z),

d̄ = ν
s(z)ds + νl(z)dl

ν(z)
. (1.8)

A rheology using Id̄ was shown to have reasonable correspondence with discrete el-

ement method simulations of 2D disks and 3D spheres (Rognon et al., 2007; Tripathi
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& Khakhar, 2011). The total local solids fraction

ν(z) = νs(z) + νl(z) (1.9)

refers to the total proportion of solid material in a given volume, and is equal to the

sum of the local solids volume fractions of small and large particles. The total solids

volume fraction ν also features in the constant I0 (1.6b). In all current models, ν is

taken to be a constant value. However, there are subtle variations in ν that depend

on the local particle concentrations of a bidisperse mixture: a mixture of two grain

sizes has a higher solids volume fraction than either phase in isolation, since the

small grains are able to fill in the gaps between the large particles in the grain ma-

trix. As far as the author is aware, however, no work has been done to incorporate

these variations in ν within a description of bidiperse rheology. Whilst the above

work has had limited success in explaining how the rheology changes with the rela-

tive local concentrations of the constituent species, they cannot directly explain the

segregation that causes the changing distribution of grains. A separate equation is

needed to model the segregation, which will be explored in the following section.

1.3 Size-segregation

One of the unique properties of granular materials is their ability to sort constituent

particles based on their size, density, shape or even frictional differences. Out of

these, size is the most efficient with even small differences in the size-ratio causing

grains to to separate (Ottino & Khakhar, 2000).

1.3.1 Mechanisms for size-segregation

A number of different mechanisms have been identified to explain size-segregation

(Williams, 1976; Schröter et al., 2006), but it is generally accepted that the process of

kinetic sieving (Middleton, 1970) plays a key role in segregation within dense granu-

lar flows. As the particles are sheared, the flow dilates slightly with gaps created in

the grain matrix. Particle-particle contacts still dominate, with collisions between

particles causing the grain matrix to continuously evolve. Gaps in the matrix regu-

larly open up, and since smaller particles are statistically more likely to fall through
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the available space than large particles, the flow acts as a kinetic sieve (Savage & Lun,

1988) that sorts the smaller particles downwards. One theory for the net motion of

large particles is known as squeeze expulsion (Savage & Lun, 1988), with the almost

constant solids volume fraction throughout depth (Rognon et al., 2007) forcing a

return flow of the larger grains towards the surface. An alternative explanation

is that kinetic stress associated with velocity fluctuations (known as granular tem-

perature) drive particles towards regions of low shear rate (Fan & Hill, 2011; Hill &

Tan, 2014). Work is currently under-way to try to ascertain the fundamental driving

mechanisms at work during segregation (e.g. Guillard et al., 2014; Staron & Phillips,

2015).

The complete segregation of a mixture is hindered by the random walk nature of

the grains, causing diffusive-remixing across the interface between two constituents.

While this process is important at higher slope angles and faster flow velocities

(Gray & Chugunov, 2006), where particles have more kinetic energy, segregation

is the dominant force for slower, less kinetic flows and leads to sharp interfaces

separating the constituents.

Whatever the exact mechanisms behind segregation are, it is clear that it can be a

very efficient process which sorts different sized constituents into an upward coars-

ening grain distribution. All the models for segregation share a similar structure,

which will be examined in the following section.

1.3.2 Continuum models for size-segregation

The segregation of a bi-disperse mixture of large (l) and small (s) particles flow-

ing in the dense regime can also be described using a continuum approach. The

concentrations of small and large particles, φs and φl, may be calculated as

φs = ν
s

ν
, φl = ν

l

ν
, (1.10)

namely the ratio of the local solids volume fractions of small/large particles to the

total local solids volume fraction. This provides suitably continuous concentration

fields provided that the local solids volume fractions νs, νl are constructed using

the ‘coarse-graining technique’ to smooth over the effects of individual particles
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(Tunuguntla et al., 2015). From (1.9), it can be trivially seen that

φs + φl = 1. (1.11)

This definition effectively incorporates the void spaces within the concentration

field, and each point in space in the continuum approach may only be occupied by

either large or small particles (Morland, 1992). For simplicity, φs = φ, with φl = 1−φ.

The evolution of the small particle concentration φ can be modelled as

∂φ

∂t
+∇ ⋅ (φu) − ∂

∂z
F̃ (φ, γ̇, dl/ds) = ∂

∂z
(D ∂φ

∂z
), (1.12)

where the first term on the left hand side describes the time dependence of the con-

centration and the second term represents advection with the bulk flow. The third

term models the segregation, with the segregation flux F̃ depending on the local

particle concentration φ, the shear rate γ̇ and other dynamic variables such as the

particle size ratio dl/ds. It is positive to ensure that there is a net motion of small

particles downwards. The sole term on the right hand side represents the diffu-

sive remixing with diffusivity D. The following summary of different segregation

models is based on the review article by Gray, Gajjar & Kokelaar (2015).

Although segregation had previously been experimentally studied for many

years, the first continuum model was presented by Bridgwater et al. (1985). Their

model resembled equation (1.12), with only the advection due to the bulk flow ab-

sent. The model was based on extensive experimental data (Bridgwater, 1976; Scott

& Bridgwater, 1975; Bridgwater, 1994) which showed that both the segregation flux

F̃ and the diffusivity D may depend on a number of kinetic variables such as the

local concentration φ, the height of the flow z, the shear rate γ̇, as well as dynamic

parameters such as the particle size ratio ds/dl and the particle roughness. The seg-

regation flux F̃ was taken as a simple product of the small particle concentration

φ, the dilute percolation velocity p, and an arbitrary function F (φ) representing

the concentration dependence. Whilst Bridgwater et al. (1985) were unsure of the

exact form of F (φ), Dolgunin & Ukolov (1995) postulated that the concentration

dependence of F was a product of the large and small particle concentrations, i.e.

F (φ) = φ(1 − φ). Whilst both models largely shared the form of (1.12), neither pre-

sented a formal derivation. For slow, steady uniform flows at low angles of repose,
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Savage & Lun (1988) used statistical mechanics and information entropy to formu-

late exact expressions for processes of kinetic sieving and squeeze expulsion, which

balanced the downslope advection with the bulk velocity u = (u(z),0,0). The seg-

regation flux F̃ shared a similar φ(1 − φ) concentration dependence, but with an

explicit dependence on other variables such as the shear rate γ̇ and the particle size

ratio dl/ds. One drawback was that although gravity is the reason for the downward

percolation of fines, it did not appear explicitly in their segregation flux. Using the

method of characteristics, Savage & Lun (1988) were able to derive two dimensional

non-diffuse (D = 0) steady state concentration profiles that matched chute flows ex-

periments analysed using splitter plates (Savage & Lun, 1988; Vallance & Savage,

2000).

A derivation of (1.12) using mixture theory (Morland, 1992) was presented by

Gray & Thornton (2005) and Gray & Chugunov (2006), which has provided a broad

theoretical framework for understanding segregation. From individual momentum

balances for each constituent, Gray and co-workers show that segregation results

from a redistribution of the bulk pressure between the constituents. A new pres-

sure scaling for the partial pressures pν (ν = l, s) supported by each constituent was

introduced, with

pl = f lp, ps = f sp, (1.13)

where factors f l and f s determine the proportion of lithostatic pressure carried by

the large and small particles. The large particles support a greater proportion of the

overburden pressure than a volume weighted distribution (f l −φl > 0), and so there

is a net upwards force driving the coarse grains towards the surface against grav-

ity. The smaller particles support a smaller proportion of the overburden pressure

than a volume weighted distribution (f s − φs < 0), and so the gravitational force is

dominant, causing a net force acting downwards. Gray and co-workers employed

the simplest perturbation away from a volume weighted average,

f l = φl +Bφlφs, f s = φs −Bφlφs, (1.14)

with B a positive constant representing the magnitude of the perturbation. Since

the large and small particle concentrations satisfy φs + φl = 1, the segregation flux
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F̃ (φ) became

F̃ (φ) = q φ(1 − φ), (1.15)

where q = (B/c)g cos ζ is the mean segregation velocity, c is the co-efficient of inter-

particle drag, and ζ is the slope inclination angle. The diffusive-remixing term on

the right hand side of (1.12), with constant diffusivity D, arises naturally from the

interaction drag between constituents in the constituent momentum balances (Gray

& Chugunov, 2006).

Physically, q determines the maximum percolation of the grains, and is depen-

dent on the particle-size ratio (Hajra & Khakhar, 2004; Thornton et al., 2012), the

strength of gravity and the degree of dilation/agitation in the flow. Thornton et al.

(2006) accounted for the presence of an interstitial fluid through a reduced gravity

ĝ = ρ̂g, where ρ̂ = (ρp∗ − ρf∗)/ρp∗ is the relative density difference between the in-

trinsic density of the particles ρp∗ and the density of the interstitial fluid ρf∗. The

effect of the reduced gravity ĝ is to slow down the segregation time-scales, which

is consistent with the chute flow experiments of Vallance & Savage (2000). In the

dense flow regime, particle-particle contacts determine the dynamics and so the

buoyancy effect of the interstitial fluid is more important that the fluid viscosity.

When the particles have the same density as the fluid, and are neutrally buoyant

(ρ̂ = 0), no segregation takes place.

In dense fluid-like avalanche flows, the local shear rate γ̇ affects the dilation and

agitation, thus is related to the mean segregation velocity through the ratio B/c.

Behind assuming B and c to be constant is the implicit assumption that the shear

rate γ̇ is constant throughout the depth of the flow. Whilst this is a good leading

order approximation for gravity driven free surface flows (GDR Midi, 2004; May

et al., 2010b; Gray & Ancey, 2011), it breaks down in confined granular systems

where the shear rate can become non-uniform. In order to model this, May et al.

(2010b) assumed that the ratio B/c was an increasing function of the shear rate γ̇,

with no segregation in regions of no shear and rapid segregation with strong shear.

It was found that the shear rate was highest close to the lower boundary of an

annular shear cell and decreased significantly above a few particles deep (May et al.,

2010a). This motivated the height dependent segregation flux

F̃ (φ) = q(z)φ(1 − φ), (1.16)
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with the mean segregation speed q(z) decreasing with the height z. A different ap-

proach by Marks & Einav (2011) and Fan et al. (2014) directly included the shear

rate dependence by assuming q ∝ γ̇. In order to match experimental results for seg-

regation in bounded heaps (Fan et al., 2012, 2013), Fan et al. (2014) also employed

a spatially non-uniform velocity profile u = u(x, z) and an extra downstream diffu-

sion term, so that the total diffusive terms were

∂

∂x
(D ∂φ

∂x
) + ∂

∂z
(D ∂φ

∂z
). (1.17)

Using this, Fan et al. were able to quantify different regimes in which the advection,

segregation and diffusion terms dominate. In general, the diffusive remixing could

take the form ∇ ⋅ (D∇φ), where the diffusivity D is isotropic as the random motion

of the grains has no preferential direction (Bridgwater, 1994). However, normally

only the normal z derivatives are considered when assuming a steady uniform flow

in the stream wise x direction (Pouliquen, 1999; Rognon et al., 2007; Gray et al., 2006).

An alternative explanation for segregation by Fan & Hill (2011) and Hill & Tan

(2014) holds fluctuations in kinetic stress gradients (also known as granular tem-

perature fluctuations) to be the cause of segregation, rather than it being a gravity

driven process. Fan & Hill (2011) examined segregation inside a vertical chute,

where there is no lithostatic pressure as the flow is entirely in the vertical direc-

tion. Instead, the segregation occurs as a result of a redistribution of kinetic stress

gradients, with the segregation flux

F̃ (φ, ∂σzz/∂z) =
1

ρ

B

c
φ(1 − φ)∂σzz

∂z
, (1.18)

where σzz is the kinetic stress. This has a close resemblance to (1.15), where g cos ζ is

the gradient of the lithostatic pressure p = g cos ζ(h−z). Hill & Tan (2014) showed in

their simulations that gravity-driven pressure fluctuations between the constituents

are not active in a rotating drum, with gravity acting only implicitly through kinetic

stress gradients. Recently Staron & Phillips (2015) attempted to distinguish between

the pressure redistribution (1.14) and kinetic stress gradients, but were not able to

conclusively decide which process was dominant.

It is interesting to note that both size and density differences can be incorporated

into the general framework of (1.12) by appropriately defining the segregation flux
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(a) (b)

Figure 1.5: Golick & Daniels (2009) recently observed that a single small particle is
able to percolate through a matrix of fine particles at a faster rate (a) than a single
large particle is squeezed upwards through a matrix of fines (b). However, no quan-
titative model was provided. This thesis develops a continuum model to account
for these observations.

F̃ . The mixture theory derivation of Gray & Ancey (2015) retains the quadratic

φ(1 − φ) form of (1.15), but also includes a concentration dependence in the mean

segregation speed, which takes account of the density differences q = qs(ρs, ρl).

Here, ρs and ρl are the densities of the small and large particles respectively. De-

pending on the size and density ratios, there are eight qualitatively different flux

functions that may form, with the theory able to predict size and density combi-

nations that display zero segregation (Vallance & Savage, 2000). The bulk flow is

no longer incompressible in this theory, and so a similar equation governs the large

particle behaviour, except q = ql(ρs, ρl). A different formulation for size and den-

sity segregation by Tunuguntla et al. (2014) incorporates the shear-rate dependence

alongside the size and density differences,

F̃ = g cos ζ

c
γ̇(ŝa − ρ̂) φ(1 − φ)

φ + (1 − φ)ŝa
. (1.19)

Here ŝ = dl/ds is the ratio of the large and small particle diameters, ρ̂ = ρl/ρs is the

ratio of the densities of the two particles, and a = 1, 2 or 3 for scalings with length,

surface-area or volume of the particles. This latter approach of Tunuguntla et al.

(2014) was motivated by Marks et al. (2012), who derived an expression for segre-

gation of a polydisperse material with a continuous size and density distribution.
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1.4 Problem: modelling an asymmetry between

different sized constituents

Golick & Daniels (2009) recently observed that a single small particle is able to per-

colate downwards through a matrix of large particles at a faster rate (fig. 1.5a) than

a single large particle is squeezed upwards through a matrix of fines (fig. 1.5b);

However, they did not provide a quantitative model. Similar observations to these

were also found at École Polytechnique Fédérale de Lausanne during early work

on the shearbox set-up (van der Vaart et al., 2015). Given that segregation is such a

ubiquitous process with wide ranging technological, economic and environmental

consequences, and that none of the models in § 1.3.2 had previously assessed these

observations, it was felt that a refined segregation model should be developed that

could capture the behaviour in figure 1.5.

This thesis contains a body of work which has developed the continuum model

for segregation (1.12) to account for the asymmetry between large and small par-

ticles. The unique contribution is to generalise the dependence of the segregation

flux F̃ on the small particle concentration φ through the use of asymmetric flux

functions. These flux functions result in an asymmetry in the particle velocities,

with the maximum speed of small particles faster than the maximum speed of large

particles. The effects of the asymmetry are examined by deriving exact solutions for

a number of different flow conditions. The model also shows very good agreement

with experimental data obtained from a shearbox experiment. This revised con-

tinuum model draws parallels with the original postulations by Bridgwater et al.

(1985), but the work in this thesis provides an extensive analysis on the effects of

this asymmetric concentration dependence. A summary of each chapter is provided

in the following section.

1.5 Structure and chapter synopsis

This alternative format thesis is structured as 4 main chapters, which includes work

that has already been published. Chapters 2–4 include published articles which
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retain their own formatting, page numbering and equation numbering. Chapter 5

is a traditional thesis chapter.

Chapter 2 contains the article by Gajjar & Gray (2014) titled “Asymmetric flux

models for particle-size segregation in granular avalanches”, which was published in

the Journal of Fluid Mechanics. The paper derives an asymmetric flux model for

segregation in dense granular flows from a mixture theory formulation. Using the

method of characteristics, exact solutions are presented for homogeneous and nor-

mally graded inflow conditions. These solutions allow the effects of the asymmetric

particle behaviour to be analysed. Chapter 3 contains the letter by van der Vaart

et al. (2015) titled “Underlying Asymmetry within Particle Size Segregation”, which has

been published in Physical Review Letters. The letter presents experimental results

from segregation in a classical shear box coupled with refractive index matched

scanning. The asymmetric behaviour is quantified on both bulk and particle scales,

and demonstrates good quantitative agreement with the asymmetric flux model.

Additional material is presented at the end of chapter 3 that explains the theoret-

ical results used to fit the model with the experimental data. Chapter 4 contains

the article by Gajjar et al. (2016) titled “Asymmetric breaking size-segregation waves in

dense granular free-surface flows”. This was published in the Journal of Fluid Me-

chanics. The article reports observations from experiments and discrete element

method simulations in a moving-bed flume, which reveal that a few large parti-

cles travel very slowly through regions of many small particles at the rear of the

flow. The previously derived asymmetric model is used to solve for the structure of

the recirculation, known as a ‘breaking size-segregation wave’. The exact solutions

derived using the method of characteristics have similar behaviour to both the ex-

periments and simulations. Chapter 5 takes a different direction to the previous 3

chapters, and examines a monodisperse flow with no segregation. Experimental

results are presented of flow in a conical geometry, with the front seen to develop

an instability that produces a regular pattern of fingers similar to those in figure 1.4.

This chapter highlights the complexity of flowing granular mixtures, and helps to

provide a context for future directions in segregration modelling. Finally, chapter 6

draws together the research in this thesis with conclusionary remarks.
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1.5.1 Equation numbering

A note should be made of the equation numbering employed in this thesis. As

the thesis is presented in alternative format with 3 of the chapters containing self-

contained papers that have been published, there is duplication of the equation

numbers between the main thesis body and the individual chapters. As a conse-

quence, when an equation from one of the papers is referenced in the main thesis

body, it will be proceeded by a superscript asterisk along with a reference to the

chapter in which it is found. For example:

...in equation (2.10)∗ of chapter 2, it is shown that...

refers to equation (2.10) of Gajjar & Gray (2014) which is contained in chapter 2. If

the equation number is not proceeded by a superscript asterisk, then it refers to an

equation from the main thesis body.



29

2. ASYMMETRIC FLUX MODELS FOR

PARTICLE-SIZE SEGREGATION IN

GRANULAR AVALANCHES

This chapter is a reprint of the article titled “Asymmetric Flux Models for Particle

Size Segregation” by P. Gajjar and J. M. N. T. Gray, which was published in volume

757 of the Journal of Fluid Mechanics (2014), on pages 297–329. Permission for

reproduction granted by Cambridge University Press. The digital object identifier

(DOI) for this article is http://dx.doi.org/10.1017/jfm.2014.503.

http://dx.doi.org/10.1017/jfm.2014.503
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Particle-size segregation commonly occurs in both wet and dry granular free-surface
flows through the combined processes of kinetic sieving and squeeze expulsion. As
the granular material is sheared downslope, the particle matrix dilates slightly and
small grains tend to percolate down through the gaps, because they are more likely
than the large grains to fit into the available space. Larger particles are then levered
upwards in order to maintain an almost uniform solids volume fraction through
the depth. Recent experimental observations suggest that a single small particle
can percolate downwards through a matrix of large particles faster than a large
particle can be levered upwards through a matrix of fines. In this paper, this effect
is modelled by using a flux function that is asymmetric about its maximum point,
differing from the symmetric quadratic form used in recent models of particle-size
segregation. For illustration, a cubic flux function is examined in this paper, which can
be either a convex or a non-convex function of the small-particle concentration. The
method of characteristics is used to derive exact steady-state solutions for non-diffuse
segregation in two dimensions, with an inflow concentration that is (i) homogeneous
and (ii) normally graded, with small particles above the large. As well as generating
shocks and expansion fans, the new asymmetric flux function generates semi-shocks,
which have characteristics intersecting with the shock just from one side. In the
absence of diffusive remixing, these can significantly enhance the distance over
which complete segregation occurs.

Key words: granular materials, mixing, pattern formation

1. Introduction
Granular avalanches are dense shallow flows of grains down an incline, which

may be continuous or intermittent (Pudasaini & Hutter 2007). As well as occurring
in chute flows (Savage & Hutter 1989; Gray, Wieland & Hutter 1999; Khakhar,
McCarthy & Ottino 1999; Pouliquen 1999), avalanches are an integral component
of more complex granular flows that involve static or slowly moving regions, such
as in hoppers, heaps and rotating drums (Nityanand, Manley & Henein 1986; Gray
2001; GDR MiDi 2004; Fan et al. 2012, 2014). There is a wide body of literature
modelling avalanches, which makes the following assumptions: (i) the granular
material is an incompressible continuum (Savage & Hutter 1989; Hutter, Wang &

† Email address for correspondence: parmesh.gajjar@alumni.manchester.ac.uk
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Pudasaini 2005); (ii) the transient and constantly evolving force chains only act
over short distances and are well approximated by a lithostatic pressure balance
(Pitman et al. 2003; Rognon et al. 2007); and (iii) the solids volume fraction Φ

is constant in the range 0.49–0.64 (Silbert et al. 2001; Kumaran 2006, 2008), a
slight dilation from a static arrangement of random close-packed spheres (Berryman
1983). These three assumptions are also good approximations for bidisperse and
polydisperse flows (Rognon et al. 2007; Tripathi & Khakhar 2011; Marks, Rognon
& Einav 2012). Avalanches are notoriously good at sorting particles by size. Not
only can this lead to a rich variety of patterns in flowing mixtures arrested by shock
waves or basal deposition (e.g. Williams 1976; Gray & Hutter 1997; Hill et al. 1999;
Ottino & Khakhar 2000), but also it can be problematic in a wide range of sectors,
from agriculture and food manufacturing, to mining, bulk chemical processing and
pharmaceutical production (e.g. Dyer 1929; Johanson 1978; Shinbrot & Muzzio
2000; Marks et al. 2013). Segregation also occurs in many granular flows in our
natural environment, including snow avalanches (Savage & Hutter 1989; Bartelt &
McArdell 2009), debris flows (Iverson 1997; Stock & Dietrich 2006), pyroclastic
surges (Calder, Sparks & Gardeweg 2000) and subaqueous grain flows (Dingler &
Anima 1987), which create a diverse array of sedimentary deposits (Branney &
Kokelaar 1992) as well as subtle feedback effects that can enhance flow run-out
(Iverson & Vallance 2001; Johnson et al. 2012; Kokelaar et al. 2014).

The dominant segregation mechanisms in granular avalanches are widely thought
to be those of kinetic sieving (Middleton 1970) and squeeze expulsion (Savage &
Lun 1988). As the grains avalanche downslope, adjacent layers of grains are sheared
over one another, and the volume fraction is slightly dilated. This creates a random
fluctuating sieve in which smaller grains preferentially fall down through gaps that
open up beneath them, because they are statistically more likely than the larger grains
to fit into the available space (Savage & Lun 1988). The solids volume fraction in
monodisperse avalanches is almost constant with depth (Silbert et al. 2001) and this
is also true in bidisperse systems (Rognon et al. 2007). As a result, there has to
be a return flow of large particles towards the free surface due to force imbalances,
which Savage & Lun (1988) termed ‘squeeze expulsion’. The combination of kinetic
sieving and squeeze expulsion is a highly efficient mechanism for sorting, with even
slight differences in the size ratio causing the grains to separate into inversely graded
layers, with large particles lying on top of the fines. This upward coarsening of the
particle-size distribution is also referred to as ‘reverse grading’ (e.g. Schminck 1967;
Fisher & Mattinson 1968; Sohn & Chough 1993).

Gray & Thornton (2005) derived a bidisperse continuum model for segregation
using mixture theory (e.g Morland 1992), with the segregation dependent on a
redistribution of partial pressures. The fundamental idea behind this model is that
larger particles support a greater proportion of the lithostatic overburden pressure as
the small particles percolate downwards. This is consistent with the kinetic sieving
idea, but Golick & Daniels (2009) suggested that the physical reason for increased
forces may simply be that the large grains have significantly more contacts than the
fines, and are, therefore, more likely to be part of force chain networks. In standard
mixture theory, coarse grains would support a volume-fraction-weighted proportion
of the pressure, in order to balance the gravitational force pulling them downwards.
However, because they support a larger fraction of the overburden pressure, the
pressure gradient pushing them upwards is slightly bigger than the gravitational force
pulling them downwards, which produces a net upward force that drives them towards
the surface. Conversely, the gravitational force acting on the small particles is larger
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than the pressure gradient that they experience, and hence they percolate downwards.
The perturbations of the pressure away from the volume-fraction-weighted lithostatic
pressure distribution in standard mixture theory are therefore crucial for segregation.

When either of the large or small particles are in a pure phase, they must carry
all of the load, and the pressure perturbation must be zero for no net motion. Gray
& Thornton (2005) postulated a quadratic concentration dependence for the pressure
perturbations, with zero perturbation at 0 and 100 % concentration of particles. This
yields a flux function that is symmetric about 50 % concentration. When this model
is combined with diffusive remixing of the particles (Gray & Chugunov 2006), it
is able to quantitatively match experimental measurements of segregation in chute
flow experiments (Savage & Lun 1988; Dolgunin & Ukolov 1995; Vallance & Savage
2000; Wiederseiner et al. 2011) as well as discrete element simulations of segregation
in periodic boxes (Thornton et al. 2012). It has also been successfully extended to
include interstitial fluid (Thornton, Gray & Hogg 2006), particle deposition (Gray &
Ancey 2009), non-lithostatic pressure (Fan & Hill 2011), depth averaging (Gray &
Kokelaar 2010b,a; Woodhouse et al. 2012) and polydisperse distributions with discrete
grain-size classes (Gray & Ancey 2011) as well as a continuous spectrum of particle
sizes (Marks et al. 2012).

Although the quadratic model has proved to be very effective at modelling
segregation, Golick & Daniels (2009) observed, in their annular ring shear cell
experiments, that a small particle falls through a matrix of large particles faster
(figure 1a) than a large particle rises through a matrix of small particles (figure 1b).
Equivalently, a single small particle is more likely to find a percolation path through
a matrix of large grains, than a single large grain is able to push the fines out of
the way as it is squeezed upwards. It is important to stress from the outset that this
asymmetry in the segregation velocities is still consistent with the mass balance of
both species, because the differential segregation rates occur at different concentrations.
Several authors have found asymmetric segregation rates by modelling the segregation
velocity with a dependence on the shear strain rate (May et al. 2010a; May, Shearer
& Daniels 2010b; Marks & Einav 2011). As these models only include a symmetric
quadratic concentration dependence, the local asymmetry in the segregation rates is
independent of the local particle concentration, and only dependent on the flow height.
In some flows, however, the shear strain rate can be approximated by a constant (GDR
MiDi 2004; May et al. 2010b; Gray & Ancey 2011), and so asymmetric segregation
rates must instead be a result of the local particle concentration. This paper examines
the impact of the local particle concentration by modelling the non-reciprocity of the
segregation rates using a concentration-dependent flux function that is asymmetric
about its maximum point.

The asymmetry can be achieved by using higher-order flux functions, such as
cubic or quartic ones, which harks back to some of the early work on segregation
by Bridgwater, Foo & Stephens (1985), who directly postulated a cubic form of the
flux function with a repeated root when the small-particle concentration equalled
100 %. Savage & Lun’s (1988) information entropy approach also yielded an even
more complex nonlinear concentration dependence. The asymmetric flux functions
studied here can either be (i) convex or (ii) non-convex, with a single inflection point
that occurs at high small-particle concentrations. The non-convex case implies that
the maximum large-particle velocity occurs when there are several large particles in
close proximity to each other (figure 1c) as opposed to the convex case where the
maximum rise rate occurs for a single particle on its own (figure 1b). This is the
segregation equivalent of the well-known sedimentation problem (Kynch 1952; Rhee,
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FIGURE 1. Experimental observations (Golick & Daniels 2009) suggest that a single small
particle (a) percolates downwards through a matrix of large particles at a faster rate than
a single large particle (b) rises through a matrix of small particles. This asymmetry at
the extremes of local concentration can be modelled by an asymmetric segregation flux,
which can be either convex or non-convex, with an inflection point at high small-particle
concentrations (see § 3). In the latter case, a single large particle (b) will rise towards the
surface slower than an intermediate concentration when there are several large particles
(c) rising at the same time.

Aris & Amundson 1986) in which two particles settle under gravity in a viscous fluid
faster than a single particle alone (Batchelor 1972). Similar mathematical problems
also occur in traffic flow (Lighthill & Whitham 1955), where the velocity of cars
tends to zero very rapidly as the road approaches maximum density. In order to
model the asymmetric behaviour in these environments, a number of flux functions
have been proposed, including logarithmic, cubic and quartic forms (Greenberg 1959;
Shannon, Stroupe & Tory 1963). In this paper, the mixture theory derivation of the
segregation equation is extended to the case of asymmetric flux functions and the
implications for the homogeneous and normally graded inflow problems of Gray &
Thornton (2005) and Thornton et al. (2006) are investigated.

2. The governing segregation equation
2.1. Mixture theory

Consider a bidisperse mixture of large (l ) and small (s) particles of the same density
flowing down a slope inclined at an angle ζ to the horizontal. As shown in figure 2,
a coordinate system Oxyz is defined with the x coordinate pointing down the slope,
the y coordinate pointing horizontally across the plane and the z coordinate being
the upward-pointing normal. Following Gray & Thornton (2005), the interstitial fluid
is neglected. This implicitly assumes that the solids volume fraction is constant and
uniform throughout the mixture (Rognon et al. 2007) and that the density of the
interstitial fluid is incorporated into the density of the grains (Thornton et al. 2006).
In this framework, each constituent (ν = l, s) occupies a local volume fraction φν per
unit granular volume (Morland 1992) and the sum of the local volume fractions is
equal to unity,

φl + φs = 1. (2.1)

Each constituent has a partial density ρν , a partial velocity uν and a partial pressure
pν . These are defined per unit volume of the mixture, and are related to the intrinsic
properties of the constituents, defined per unit volume of the constituent, by

ρν = φνρν∗, uν = uν∗, pν = φνpν∗, (2.2a–c)
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FIGURE 2. A coordinate system Oxyz is defined with the x-axis pointing down the plane,
the y-axis horizontally across the plane (pointing into the page) and the z-axis being the
upward-pointing normal. The slope is inclined at an angle ζ to the horizontal, h is the
flow depth and u is the bulk velocity, which generally includes both shear and basal slip.
From a homogeneously mixed inflow at the origin, the particles segregate into inversely
graded layers, with large particles overlying fines. With asymmetric segregation models,
the distance for complete segregation is dependent on the inflow concentration and can
be significantly longer than the quadratic flux case.

where a starred quantity denotes an intrinsic property. The bulk density, bulk velocity
and bulk pressure of the flow are defined as

ρ = ρ l + ρs, ρu= ρ lul + ρsus, p= pl + ps, (2.3a–c)

where the partial velocity uν and the bulk velocity u have components (uν, vν, wν)
and (u, v,w) in the (x, y, z) directions, respectively.

Each constituent satisfies its own mass conservation law,
∂ρν

∂t
+∇ · (ρνuν)= 0 (ν = l, s), (2.4)

where ∇ is the standard vector differential operator ‘del’ and · is the dot product.
The bulk mass balance is obtained by summing (2.4) over both constituents. Since
the intrinsic densities of the two phases are assumed to be equal, it follows from
(2.1)–(2.4) that the bulk velocity field is incompressible, i.e. ∇ ·u=0. Each constituent
also satisfies its own momentum conservation law,

∂

∂t
(ρνuν)+∇ · (ρνuν ⊗ uν)=−∇pν + ρνg+ βν (ν = l, s), (2.5)

where ⊗ denotes the dyadic product, g is the gravitational force and βν is the
interaction force exerted on constituent ν by the other constituent. By Newton’s third
law, these interaction forces are equal and opposite, β l =−βs.

2.2. Normal momentum balance
It is assumed that the flow is shallow, i.e. the depth of the flow is much less than its
length, so that the normal acceleration terms in the constituent momentum balances
(2.5) may be neglected. The individual constituent momentum balances may be
summed to give the bulk normal momentum balance,

0=−∂p
∂z
− ρg cos ζ . (2.6)
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By assuming the pressure to be zero at the free surface z= h, (2.6) can be integrated
to show that the bulk pressure field is lithostatic,

p= ρg(h− z) cos ζ . (2.7)

Following Gray & Thornton (2005), each constituent is assumed to support a
proportion of the bulk lithostatic pressure,

ps = f sp, pl = f lp, (2.8a,b)

where (2.3c) implies that the scaling factors f ν must sum to unity,

f l + f s = 1. (2.9)

Each constituent cannot support negative pressure, so f ν lies in the range 0 6 f ν 6 1.
Following Gray & Thornton (2005) and Gray & Chugunov (2006), the interaction

drag βν in the constituent momentum balance (2.5) is assumed to take the form

βν = p∇f ν − ρνc(uν − u)− ρd∇φν (ν = l, s). (2.10)

The first term on the right-hand side combines with the partial pressure gradient
term in (2.5) to ensure that the particles are driven by intrinsic pressure gradients
rather than partial ones. The second term is a linear drag between constituent ν and
the bulk particle matrix, and has coefficient c. Finally, the third term represents the
diffusive remixing, whose strength is given by the diffusion coefficient d. It models
the random walks that particles experience as they are sheared in the flow (Dolgunin
& Ukolov 1995; Gray & Chugunov 2006). With the interaction drag (2.10) and the
lithostatic pressure distribution (2.7), the momentum balance (2.5) implies that the
normal particle flux of constituent ν is

φνwν = φνw+ ( f ν − φν)g
c

cos ζ − d
c
∂φν

∂z
(ν = l, s), (2.11)

where the first term on the right-hand side gives the normal advection due to the bulk
velocity, the second term gives the segregation flux and the last term gives the flux due
to diffusive remixing. The factor f ν − φν controls whether a particle will rise or fall
due to segregation, and is essentially the proportion by which the pressure deviates
away from the volume-fraction-weighted average. In the absence of diffusion, large
particles carry excess pressure and will therefore rise, while small grains carry less
of the overburden and fall relative to the bulk. In general, the factors f ν − φν are
functions of the large- and small-particle concentrations, φl and φs (see e.g. Gray &
Ancey 2011), but in the bidisperse case φl = 1− φs from (2.1) and thus f ν − φν can
be written solely in terms of the small-particle concentration φs as

f l − φl =+bF(φs),

f s − φs =−bF(φs),

}
(2.12)

where the function F describes the dependence of the segregation on the small-particle
concentration φs, and b is a parameter that is dependent on the shear rate, the local
pressure, the grain-size ratio and possibly other variables. The opposite signs in
(2.12) ensure that the segregation fluxes are equal and opposite for either constituent,
which preserves the global mass balance, i.e. summing (2.11) over both constituents,
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FIGURE 3. (a) The simple cubic function (3.4) demonstrates the behaviour of the entire
class of asymmetric functions, with parameter γ in the range 0 < γ 6 1. For small
amounts of asymmetry (γ = 0.35, thick dashed line), the flux function remains convex,
but larger amounts of asymmetry (γ = 0.90, thick solid line) causes the flux function to
be non-convex, with a single inflection point at φinf (grey circle). The symmetric quadratic
flux function (2.14) is shown for comparison (thin solid line) and corresponds to γ → 0.
(b) Non-convex flux functions yield a special feature in the exact solution known as a
semi-shock. A semi-shock is formed between two points φ and φ◦ (black circles), where
the chord between the two points is tangential to the flux curve F at φ◦. There are two
pairs of points {1, φC} and {φD, 1} (open circles) that are of particular importance in the
construction of the exact solution. The chord between φC and φ = 1 is tangential to the
flux curve at φC, whilst the chord linking φD and φ = 1 is tangential to the flux curve at
φ = 1. Negative values of the flux function, −F(φ), are plotted since the gradients then
correspond to the gradients in the exact solution, as explained in § 4.

using (2.1) and (2.12), implies that
∑

ν=l,s φ
νwν = w, which is consistent with (2.3b).

For large particles to rise, F must be positive, and, in order that there is no net
motion whenever the particles are in a pure phase, it must satisfy the constraints

F= 0, φs = 0,
F= 0, φs = 1.

}
(2.13)

Gray & Thornton (2005) postulated a quadratic flux function,

F(φs)= φs(1− φs), (2.14)

which is symmetric about the maximum, F(φmax) = 1/4 at φmax = 1/2, as shown
in figure 3. This is the simplest function that satisfies the constraints (2.13) and it
appears to capture the leading-order behaviour observed in experiments quite well
(Wiederseiner et al. 2011). In this paper, more general asymmetric flux functions are
investigated to understand some of the more subtle physical effects that are observed.

2.3. The segregation equation
The constituent velocities in the down- and cross-slope directions are assumed to be
equal to the bulk velocity,

uν = u, vν = v. (2.15a,b)
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Substituting the particle velocities (2.11) and (2.15), together with the segregation flux
(2.12), into the constituent mass balance (2.4) implies that the segregation–remixing
equation for small particles is

∂φs

∂t
+∇ · (φsu)+ ∂

∂z
(−qF(φs))= ∂

∂z

(
D
∂φs

∂z

)
, (2.16)

where q = (b/c)g cos ζ is the maximum segregation velocity, and D = d/c is the
diffusivity. The first term is the time rate of change of the concentration, the second
term is the local advection by the bulk flow, the third term drives the particle-size
segregation, whilst the fourth term accounts for diffusive remixing.

The avalanche thickness H is typically much less than the downslope length scale
L. Incompressibility of the bulk flow implies that, if U is a typical downslope velocity,
typical normal velocities will be of magnitude εU, where ε =H/L� 1 is the aspect
ratio of the avalanche. This suggests introducing non-dimensional variables, denoted
by the tildes, using the scalings

(x, y, z)= L(x̃, ỹ, εz̃), (u, v,w)=U(ũ, ṽ, εw̃), t= (L/U)t̃. (2.17a–c)

Dropping the tildes, the non-dimensional segregation equation (2.16) therefore
becomes

∂φ

∂t
+∇ · (φu)+ ∂

∂z
(−SrF(φ))= ∂

∂z

(
Dr
∂φ

∂z

)
, (2.18)

where for simplicity φ, without the superscript ‘s’, is the small-particle concentration.
The large-particle concentration is 1− φ from (2.1). The non-dimensional segregation
and diffusive-remixing numbers are

Sr = qL
HU

, Dr = DL
H2U

, (2.19a,b)

respectively, and their ratio, Sr/Dr, is known as a Péclet number Pe for segregation.
It quantifies the strength of the segregation compared to diffusive remixing within
the flow. While diffusion is very important on steep slopes or when the particle-size
differences are small, it is useful to consider the non-diffuse limit in which Dr = 0,
because it allows considerable insight to be gained. Such conditions develop on
low-inclination slopes with large size differences between the particles (Gray &
Hutter 1997; Dasgupta & Manna 2011), where Péclet numbers exceeding 10 have
been measured in experiments (Gray & Chugunov 2006; Wiederseiner et al. 2011).
In the remainder of this paper, the segregation equation (2.18) is therefore considered
in the non-diffuse limit, which reduces it to

∂φ

∂t
+∇ · (φu)+ ∂

∂z
(−SrF(φ))= 0. (2.20)

In the absence of erosion and deposition, (2.20) is solved subject to a no-flux
condition at the surface and base of the avalanche, z = s(x, t) and z = b(x, t),
respectively (see e.g. Gray & Ancey 2011). When Dr = 0, these boundary conditions
reduce to

F(φ)= 0 at z= s(x, t) and z= b(x, t). (2.21)

Since, by definition (2.13), the flux F(φ) is zero when either of the particles are in a
pure phase, the no-flux condition (2.21) is satisfied when either φ = 0 or φ = 1.
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FIGURE 4. The modulus of the large (grey) and small (black) normal segregation
velocities, relative to the bulk velocity w, plotted as a function of the small-particle
concentration φ (lower axis) and large-particle concentration 1 − φ (upper axis). The
velocities for large and small particles with the quadratic flux function (2.14) are straight
(solid) lines, which attain the same maximum speed at φ = 1 and φ = 0, respectively.
An asymmetric flux function is required to model the observation that small particles (A)
can percolate through a matrix of large particles at a faster rate than a large particle (B)
rises up through a matrix of small particles, e.g. for the convex cubic flux function (3.4)
with γ = 0.35 (dashed lines). For asymmetric non-convex flux functions (e.g. γ = 0.9,
dash-dotted lines), the maximum large-particle rise velocity occurs at φcrit, which implies
that a group of large particles (C) may rise faster than an isolated large grain.

3. Asymmetric flux functions
In the absence of diffusion, the large- and small-particle segregation velocities in

the normal direction can be derived by substituting (2.12) into (2.11) and using the
scalings (2.17) to give

wl(φ)=w+ Sr
F(φ)
1− φ , ws(φ)=w− Sr

F(φ)
φ

. (3.1a,b)

For the quadratic flux function (2.14), proposed by Gray & Thornton (2005), this
implies that, relative to the bulk flow, the normal segregation velocities are linear
functions of the small-particle concentration, i.e.

wl(φ)=w+ Srφ, ws(φ)=w− Sr(1− φ). (3.2a,b)

Figure 4 shows the rise/fall rate of large/small particles (grey/black solid lines) for the
quadratic flux (3.2) as a function of the small-particle concentration φ. The maximum
rise velocity of the large particles is Sr at φ = 1 (i.e. in the limit of 100 % small
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particles and 0 % large particles), whilst the small particles percolate downwards at a
maximum speed −Sr when φ = 0 (i.e. in the limit of 0 % small particles and 100 %
large particles). The segregation speed |wν − w| of each species (ν = l, s) has the
same linear behaviour when plotted against the concentration of that species φν (where
φs= φ and φl= 1− φ from (2.1)). Critically, there is no asymmetry in the maximum
rise/fall rates, as the maximum speed of small particles falling is the same as the
maximum speed at which large particles rise.

In order to capture the effect that a single small particle falls through a matrix
of large particles at a faster rate than a single large particle rises through a matrix
of fines, asymmetric flux functions F(φ) are considered. These are skewed towards
φ = 0, with a maximum occurring at 0< φmax < 1/2, as shown in figure 3. The flux
functions are normalised so that they all have the same maximum as the quadratic flux
function (2.14). For asymmetric convex flux functions, with no inflection points, the
maximum small-particle percolation velocity (figure 4-A) still occurs when φ = 0, as
in the quadratic case, but it is faster than the maximum rate at which large particles
are squeezed up to the surface at φ=1 (figure 4-B). In addition, for singly non-convex
flux functions with an inflection point at φinf in the interval (φmax, 1), the maximum
large-particle rise velocity occurs at φcrit 6= 1, as shown in figure 4(C), which satisfies

(1− φcrit)F′(φcrit)+ F(φcrit)= 0, (3.3)

where F′ is the first derivative, dF/dφ. Functions with inflection points are, therefore,
also able to capture the observation that a group of large particles will sometimes rise
faster than an isolated large particle on its own.

The behaviour of an entire class of asymmetric flux functions is illustrated in this
paper by a simple one-parameter cubic function,

F(φ)= Aγφ(1− φ)(1− γφ), (3.4)

where γ ∈ (0, 1] is a parameter that controls the amount of asymmetry and hence the
non-reciprocity of the segregation rates, as shown in figures 3(a) and 4. The constant
Aγ is chosen so that the maximum, F(φmax) = 1/4, is the same as for the quadratic
case, whilst γ 6 1 ensures that F is positive for φ ∈ [0, 1]. In the limit γ → 0, the
quadratic flux function is recovered. For γ 6 0.5, the flux function −SrF in (2.18)
remains convex (i.e. −SrF′′(φ) > 0 for all φ ∈ [0, 1]), but, when γ > 0.5, the flux
function becomes non-convex, with a single inflection point φinf at

φinf = 1+ γ
3γ

, (3.5)

where γ ∈ (0.5, 1] means that 2/3 6 φinf 6 1. The rise/fall rates for the convex
flux functions (γ = 0.35, dashed lines) and non-convex flux functions (γ = 0.9,
dash-dotted lines) are shown in figure 4. It can be seen that the rise/fall rates
|wν −w| of large/small particles (ν = l, s) are close to linear at low concentrations of
large/small particles φν , but there is nonlinear behaviour at large φν . Some evidence
of this nonlinearity is provided by the discrete element method (DEM) simulations of
Fan et al. (2014). All the results in this paper are derived for a general flux function
F with a maximum skewed towards low concentrations of fines. The specific cubic
form (3.4) is used to illustrate the results in a practical example. Further experiments
and DEM simulations will need to be performed to determine the precise form of
the flux function.



Asymmetric flux models for particle-size segregation in granular avalanches 307

For the non-convex case, it is useful to define the image point φ◦ of a concentration
φ as the point where the gradient of the tangent to the flux function F′(φ◦) is equal
to the gradient of the chord joining φ to φ◦ on F, i.e. the point φ◦ satisfies

F′(φ◦)= F(φ)− F(φ◦)
φ − φ◦ . (3.6)

Comparing (3.3) with (3.6) implies that φcrit is the image point of unity, i.e. φcrit= 1◦,
which is also defined as φC in figure 3(b). For the cubic flux (3.4), the image point
of φ is

φ◦ = 1
2

(
1+ γ
γ
− φ

)
. (3.7)

The chord joining one such pair {φ, φ◦} is shown by the black circles in figure 3(b).
In particular, the image point of φ= 1 is φC=φcrit, which for the cubic function gives

1◦ = φC = φcrit = 1
2γ
, (3.8)

whereas φ = 1 is the image point of

φD = 1− γ
γ

, so φ◦D = 1. (3.9)

The chords joining {1, φC} and {φD, 1} are shown by dashed lines in figure 3(b).

4. The method of characteristics
It is assumed that the depth is constant and that the transverse and normal

components of the bulk velocity are zero everywhere, v= 0, w= 0. Incompressibility
then implies that the downslope velocity u= u(z) is only dependent on z, i.e. the flow
is steady and uniform in x (Pouliquen 1999; Silbert et al. 2001; Rognon et al. 2007;
Forterre & Pouliquen 2008). This downslope velocity profile could, for instance, be
the well-known Bagnold-like profile (Bagnold 1954; GDR MiDi 2004; Jop, Forterre
& Pouliquen 2005; Gray & Edwards 2014), or a velocity profile with both shear and
basal slip such as that sketched in figure 2. Scaling the height with the flow thickness
implies that z ∈ [0, 1]. For steady-state non-diffuse solutions, the segregation equation
(2.20) reduces to

∂

∂x
(φu(z))+ ∂

∂z
(−SrF(φ))= 0. (4.1)

By making the change of variables

ξ = x, ψ =
∫ z

0
u(ẑ) dẑ, (4.2a,b)

the steady-state segregation equation (4.1) is mapped into a velocity-independent form

∂φ

∂ξ
+ ∂

∂ψ
(−SrF(φ))= 0, (4.3)

provided u(z) 6= 0. This coordinate transformation was first introduced by Gray
& Thornton (2005) and is equivalent to solving the problem in streamfunction
coordinates (e.g. Gray & Ancey 2009). By virtue of the velocity scaling (2.17), the
free surface that lies at z = 1 can be mapped to ψ = 1, without loss of generality.
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Transformation (4.2) is valid for any velocity profile u = u(z), and so the inverse
transformation allows the solution in the streamfunction domain (ξ , ψ) to be mapped
back to physical space (x, z) for any velocity profile u = u(z). The conservative
equation (4.3) can be written in quasi-linear form as

∂φ

∂ξ
− SrF′(φ)

∂φ

∂ψ
= 0, (4.4)

where a prime denotes a derivative. This is a scalar conservation law, which can be
solved by the method of characteristics (e.g. Courant & Hilbert 1962; Whitham 1974;
Rhee et al. 1986). The concentration φ is constant along characteristic curves, which
may be written in the parametric form (ξ(s), ψ(s)), where s is the distance along the
curve. As the concentration φ is constant, the total derivative is zero, so

dφ
ds
= dξ

ds
∂φ

∂ξ
+ dψ

ds
∂φ

∂ψ
= 0. (4.5)

By comparing (4.4) with (4.5) it follows that

dξ
ds
= 1,

dψ
ds
=−SrF′(φ), (4.6a,b)

which, eliminating s, implies that the characteristic curves are given by solving

dψ
dξ
=−SrF′(φ)= c(φ). (4.7)

Since φ is constant on each curve, the gradient of the characteristic, c(φ), is also
constant. Thus, in (ξ , ψ) space, the characteristics are straight lines, whose gradient
is equal to the gradient of the flux function, i.e. c(φ) = −SrF′(φ), as shown in
figure 5(a,b). If there is a discontinuity in the concentration field at (ξλ, ψλ), with φ+
on the forward side and φ− on the rearward side (defined in the direction of increasing
ψ), then, provided φ+>φ−, the gradients satisfy c(φ+)> c(φ−) and the characteristics
diverge from one another. The void between the diverging characteristics is filled by
a rarefaction fan, centred at (ξλ, ψλ), within which the concentration is determined
by characteristics with concentrations lying in the range φ ∈ [φ−, φ+], as shown in
figure 5(c,d).

Conversely, if the initial discontinuity is such that φ+<φ−, then, for a convex flux
function, the gradients satisfy c(φ+)< c(φ−), and the characteristics intersect to form a
shock. The shock path is governed by the jump condition, which can be derived from
an integral form of (4.3) using a limiting argument (see e.g. Chadwick 1976; Gray &
Thornton 2005). The jump condition for (4.3) in the mapped coordinate system is

−JφKdψ
dξ
+ J−SrF(φ)K= 0, (4.8)

where the ‘jump’ brackets J·K indicates the difference in the enclosed quantity between
the forward (+) and rearward (−) sides of the shock. This implies that the gradient
of the shock is

dψ
dξ
=−Sr

JF(φ)K
JφK = c(φ+, φ−), (4.9)

where the function c(φ+, φ−), with two arguments φ+ and φ−, is the gradient of
the chord joining φ+ with φ− on the segregation flux curve −SrF(φ), as shown in
figure 5(e). Since the characteristics on the forward (+) side have a lower gradient
than those on the rearward (−) side, all the characteristics intersect with the shock,
as shown in figure 5( f ) for the cubic convex flux function with γ = 0.35 and Sr= 1.0.
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FIGURE 5. The segregation flux −SrF(φ) determines the structure of the solution by
setting the gradient of the characteristics c(φ)=−SrF′(φ) (4.7), as shown for the convex
function (3.4) with γ = 0.35 and Sr = 1.0. At concentration φ = 1/2, the gradient c(1/2)
is tangent to the flux curve (a) and has the same gradient as the characteristics (b). For
a discontinuity (c) with φ+ = 1 above and φ− = 0 below, the gradients satisfy c(1) > c(0)
and so the characteristics (d) diverge. The region is filled with a rarefaction fan. While
for a discontinuity (e) with φ+ = 2/5 and φ− = 1, the gradients satisfy c(2/5) < c(1) and
the characteristics ( f ) converge to form a shock. The gradient of the shock is set by the
gradient c(2/5, 1) of the chord joining φ+ to φ− on the flux curve (e).
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For convex flux functions, the gradient is monotonically increasing with increasing
φ, so c(φ+)< c(φ−) when φ+<φ−, and the characteristics always converge. However,
in the non-convex case, there is an inflection point at φinf , which implies that the
gradients of the characteristics increase up to φinf , but decrease again afterwards.
If two states φ+ < φ− that lie on either side of the inflection point are joined by
a chord with gradient c(φ+, c−), then the φ+ characteristics will intersect with the
shock, but the φ− characteristics will diverge away from it, which is unphysical.
The non-convex flux functions therefore introduce a new feature into the solution,
a semi-shock, which has the φ+ characteristics intersecting it from one side, and
characteristics tangential to it on the other side. In this problem, an expansion fan
lies adjacent to the semi-shock with characteristics of concentrations between φ◦+ and
φ−. By the definition of the image point (3.6), the φ◦+ characteristic lies tangential to
the shock, and so characteristics only intersect with the semi-shock from one side. In
general, a shock is only admissible if the area bounded by the flux curve, −SrF(φ),
lies completely to the left of the chord joining φ− to φ+ when traversed from φ−
to φ+ (Rhee et al. 1986; Laney 1998). There is a well-defined flow direction due to
the bulk velocity u(z), so both x and ξ are time-like variables. The above admissible
shock condition is thus equivalent to the entropy condition of Oleinik (1959), and is
compatible with the entropy condition of Lax (1957) for the convex case. Non-convex
scalar conservation laws have been widely analysed in other contexts, for example
in two-phase porous media flow (Buckley & Leverett 1942), and so the semi-shock
construction may also be found in the literature as a ‘generalised Lax shock’, a
‘one-sided contact discontinuity’ or an ‘intermediate discontinuity’ (e.g. Liu 1974;
Jeffrey 1976).

For example, consider the cubic flux function (3.4) with γ = 0.9 in figure 6. The
area bounded by the flux curve in figure 6(a) lies to the left as one moves along the
chord from φ− = 0.65 to φ+ = 0.0, and so the lower φ− = 0.65 characteristics collide
with the upper φ=0.0 characteristics to form the shock shown in figure 6(b). However,
a shock between φ−=0 and φ+=1 is not admissible, because the area bounded by the
flux curve lies to the right as one moves along the chord joining φ−= 0 to φ+= 1, in
figure 6(c). A single rarefaction fan is also not possible owing to the presence of the
inflection point 0<φinf = 0.704< 1. Instead, a semi-shock and an adjacent expansion
fan are formed. The semi-shock joins φ+ = 1 and its image point φ− = 1◦, whilst the
expansion fan contains the characteristics generated by φ ∈ [0, 1◦]. As one now moves
along the chord from φ− = 1◦ to φ+ = 1, the dark grey area in figure 6(c) lies to the
left and so the shock is admissible. The structure of the semi-shock and the adjacent
fan is shown in figure 6(d). Semi-shock–fan structures also occur for φ− = 1.0 and
φ+ = φ0, when φ0 lies in the range φD < φ0 < φinf . Finally, the area bounded by the
flux function lies to the right of the chord joining φ− = 1 to φ+ = 0.75, as shown in
figure 6(e), so a shock is not admissible, and a semi-shock does not form because the
inflection point φinf = 0.704 does not lie in the interval (φ+, φ−). Instead, a rarefaction
fan forms, as shown in figure 6( f ).

5. Homogeneous inflow

Following Gray & Thornton (2005), the steady-state solution is now constructed for
segregation in a steady uniform flow (Pouliquen 1999; Rognon et al. 2007; Forterre
& Pouliquen 2008) in which the inflow at ξ = 0 is of homogeneous concentration φ0
through the depth,

φ(0, ψ)= φ0, 0 6ψ 6 1. (5.1)
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FIGURE 6. Non-convex flux functions, such as the cubic function (3.4) with γ = 0.9
and Sr = 1, are more complicated because of the inflection point φinf , which causes the
maximum large-particle velocity to occur at φ = φcrit = φC. In order for a shock to be
admissible, the area bounded by the flux curve must lie to the left of the chord joining
φ− to φ+. (a) When φ−= 0.65 and φ+= 0, the bounded area (grey) lies completely to the
left as one moves along the chord from φ− to φ+ in the direction indicated, so (b) the
shock is admissible and the characteristics converge from either side. (c) The cross-hatched
area lies to the right of the chord joining φ− = 0 and φ+ = 1, and so the shock is not
admissible. However, the area (grey) lies to the left of the chord joining φ=1◦ to φ=1. A
semi-shock (d) is therefore formed, whose gradient is equal to the gradient of the φ= 1◦
characteristic, together with an adjacent fan for φ ∈ [0, 1◦]. The semi-shock coincides with
the φ= 1.0◦ characteristic that is at the edge of the rarefaction fan. (e) The cross-hatched
and labelled area lies to the right of the chord joining φ− = 1 to φ+ = 0.75, and so a
shock is not admissible. In addition, a semi-shock does not form because the inflection
point φinf does not lie in the range [0.75, 1]. ( f ) Instead, the characteristics diverge to
form a rarefaction fan.
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FIGURE 7. Exact solutions for the small-particle concentration φ in mapped coordinates
(ξ , ψ) using the cubic flux function (3.4) with γ = 0.9 and Sr = 0.5. At the inflow
(ξ = 0), the grains are initially homogeneously mixed with concentration (a) φ0 = 0.08,
(b) φ0 = 0.50 and (c) φ0 = 0.65. Thick solid lines represent shocks, thick dash-dotted
lines represent semi-shocks whilst thick dashed lines represent the edge of rarefaction fans.
Characteristics are shown with thin solid black lines.

There are three distinct solution structures that are dependent on φ0 and the particular
form of the flux function F(φ). For convex flux functions, and non-convex flux
functions with the condition φ0 6 φD, where φD is defined in (3.9), the solution
consists of three shocks separating the homogeneous inflow from a layer of large
particles above and a layer of small particles below. Concentration φD is significant
because it is the maximum concentration at which the image point φ◦ lies outside the
range [0, 1). These solutions therefore have essentially the same structure as those for
the quadratic flux (Gray & Thornton 2005), as shown in figure 7(a). Non-convex flux
functions also give rise to two new solutions. When the initial concentration is in the
range φD < φ0 < φinf , a semi-shock with an adjacent fan separates the homogeneous
region from the lower layer of small particles, as shown in figure 7(b). If the initial
concentration is increased further, φ0 > φinf , the homogeneous region and region of
small particles are separated by just a rarefaction fan, as in figure 7(c).

These new structures arise because, for φ > φcrit, the velocity of large particles
decreases with increasing small-particle concentration. A few large particles therefore
rise at a very slow rate, and so they are swept a long distance downstream with the
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FIGURE 8. The (γ , φ0) parameter space for the homogeneous inflow problem (figure 7)
using the cubic family of flux functions (3.4). (a) A three-shock solution similar to that
in Gray & Thornton (2005) occurs for convex flux functions (γ 6 0.5) and non-convex
functions (γ > 0.5) with a low inflow concentration of small particles, φ0 < φD. (b) For
non-convex flux functions γ > 0.5 with an inflow concentration of small particles φD 6
φ0 < φinf , a semi-shock with an adjacent fan separates the homogeneous region from the
region of small particles. (c) For even higher initial concentrations of small particles, φ0 >
φinf , this separation becomes a smooth rarefaction fan. The curves φ0 = φD and φ0 = φinf
are given by (3.9) and (3.5) respectively. Parameter values for the structures in figure 7
are marked with crosses.

bulk flow before they finally join the large-particle layer above. All three solutions
are found using the family of cubic flux functions (3.4) parametrised by γ , with F(φ)
convex for γ 6 0.5 and non-convex for 0.5< γ 6 1. The (γ , φ0) parameter space is
shown in figure 8, with regions (a–c) corresponding to the three different structures
in figure 7(a–c), respectively. The three structures in (ξ , ψ) space are explained in
more detail below, and can be transformed back to physical (x, z) space using the
results of § 6.4, as shown in, for example, Gray & Thornton (2005), Thornton et al.
(2006), Thornton & Gray (2008) and Gray & Ancey (2011). Note that this inverse
transformation locally stretches and compresses the normal coordinate, but leaves the
downstream coordinate unaffected.

5.1. Three-shock solution
The characteristics sweep the initial concentration downstream to create a region
adjacent to the inflow that is still at φ = φ0. Within this region, there is a flux of
small particles percolating downwards, and an equal and opposite flux of large grains
being squeezed upwards. However, at the base, ψ = 0, the boundary condition (2.21)
implies that there is no flux of large particles and, consequently, the small particles
have to separate out into a pure phase across the concentration shock AF shown in
figure 7(a). This can be computed by solving the jump condition (4.9) with φ+ = φ0

and φ− = 1, subject to the condition that the shock starts at point A, which has
coordinates (0, 0), to give the straight line

ψAF = Sr
F(φ0)

1− φ0
ξ . (5.2)

Similarly, the upper shock BF separates the homogeneous region (φ− = φ0) from the
layer of large particles (φ+=0) that collect at the surface. By integrating (4.9), subject
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to the initial condition that the shock starts from point B with coordinates (0,1), shock
BF has coordinates (ξ , ψBF) given by

ψBF = 1− Sr
F(φ0)

φ0
ξ . (5.3)

The two shocks AF and BF meet at point F, whose coordinates (ξF, ψF) are found by
equating (5.2) and (5.3) to give

ξF = φ0(1− φ0)

SrF(φ0)
, ψF = φ0. (5.4a,b)

At point F the flow has reached its final segregated state with a third shock FG
separating the two inversely graded layers, with large particles above (φ+ = 0) and
small particles below (φ− = 1). Integrating (4.9) implies that the shock FG has
coordinates

ψFG = φ0, ξ > ξF, (5.5a,b)

which is independent of F (and hence γ ), as the flux function and the asymmetry have
no influence on the final non-diffuse segregated state. Convex flux functions always
give rise to this three-shock structure, and hence the solution resembles that derived
by Gray & Thornton (2005) for the quadratic flux function.

5.2. Semi-shock solution with adjacent fan
For non-convex flux functions with an inflow concentration φD 6 φ0 6 φinf , the
homogeneous region and the lower layer of small particles are separated by a
semi-shock AE with an adjacent expansion fan AEFA centred at point A= (0, 0), as
shown in figure 7(b). Semi-shock AE starts at point A and separates the characteristics
of the homogeneous region φ+ = φ0 from the φ− = φ◦0 characteristic, which lies
immediately adjacent and tangential to the shock. From (3.6) and (4.9), it follows
that the semi-shock AE has coordinates (ξ , ψAE) given by

ψAE =−SrF′(φ◦0)ξ , (5.6)

with 0 6 ξ 6 ξE. The rarefaction fan occurs between the φ = 1 and φ◦0 characteristics,
and is given by

ψ =−SrF′(φ)ξ, for φ ∈ [φ◦0, 1]. (5.7)

The upper shock BE separates the homogeneous region from the layer of large
particles above and satisfies the same equation as shock BF in the three-shock
structure (5.3). The semi-shock AE meets the upper shock BE at point E, which
from (5.3) and (5.6) has coordinates

ξE = φ0

Sr(F(φ0)− φ0F′(φ◦0))
, ψE =−SrF′(φ◦0)ξE. (5.8a,b)

Another shock EF separates the rarefaction fan (φ− = φ) from the layer of large
particles above (φ+= 0). Using the chain rule, the shock gradient (4.9) can be written
as

dψ
dφ
=−Sr

F(φ)
φ

dξ
dφ
, (5.9)
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while the equation for the characteristics of the fan (5.7) can be differentiated with
respect to φ to give

dψ
dφ
=−SrF′′(φ)ξ − SrF′(φ)

dξ
dφ
. (5.10)

Equating (5.9) and (5.10) yields an ordinary differential equation (ODE) for the shock
path EF,

1
ξ

dξ
dφ
= φF′′(φ)

F(φ)− φF′(φ)
, (5.11)

which can be integrated, subject to the initial condition that the shock starts from point
(ξE, ψE). Using (5.7) and the definition of the image point (3.6) to reformulate the
initial condition (5.8), it follows that the shock EF is parametrised by

ξEF = φ0

Sr(F(φ)− φF′(φ))
, ψEF =−SrF′(φ)ξEF, for φ ∈ [φ◦0, 1]. (5.12a,b)

Shock EF ends at F, whose coordinates are given by (5.12) with φ = 1, i.e.

ξF = φ0

−SrF′(1)
, ψF = φ0. (5.13a,b)

A final shock FG separates the large- and small-particle layers in the final inversely
graded state, as in (5.5).

5.3. Rarefaction fan solution
Here the solution is essentially the same as that in § 5.2 except that there is no semi-
shock, i.e. the homogeneous inflow and the layer of small particles are separated by a
rarefaction fan AEFA centred at point A= (0, 0). The characteristics in the expansion
fan (5.7) now lie in the range φ ∈ [φ0, 1]. The left-hand edge of the rarefaction fan
AE is given by the φ = φ0 characteristic, and therefore φ0 replaces φ◦0 in (5.8) for E.
Similarly, shock EF given by (5.12) is now parametrised by φ ∈ [φ0, 1].

5.4. Final segregation distance
For the class of asymmetric flux functions F(φ) under consideration, if F(φ) is convex,
or F(φ) is non-convex and φ0 6φD, then the maximum segregation distance ξF is given
by (5.4), while if F(φ) is non-convex and φ0>φD, the maximum segregation distance
is given by (5.13). For the cubic family of flux functions (3.4), this implies that

ξF =





1
SrAγ (1− γφ0)

, γ 6 0.5 or γ > 0.5 with φ0 6 φD,

φ0

SrAγ (1− γ ), γ > 0.5 with φ0 >φD,

(5.14)

which is an increasing function of φ0, as shown in figure 9. Note that, for the
quadratic model (2.14), when γ = 0, the segregation distance ξF = 1/Sr, which is
independent of the inflow concentration, as shown by the grey line in figure 9.
The dashed line shows the segregation distance for the cubic flux function with
γ = 0.35. There is a weak dependence on φ0: for φ0 < 1/2, the distance for complete
segregation ξF is shorter than in the quadratic model, reflecting the fact that there
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FIGURE 9. The maximum segregation distance ξF plotted as a function of the inflow
concentration φ0 for the quadratic model (grey line), the convex cubic model with γ =0.35
(dashed line) and two cases of the non-convex cubic model (solid and dot-dashed lines)
for γ = 0.65 and 0.9, respectively. The black circles denote the change in the functional
form of ξF in (5.14) due to the presence of a rarefaction fan in the solution structure. The
curves have been plotted for Sr= 0.5. Inset: The intermediate point ξE given by (5.8) also
increases with the inflow concentration φ0, showing that the increasing behaviour of the
final segregation distance should be identifiable in experiments.

are only a few small particles that percolate down faster; whilst for φ0 > 1/2, the
segregation distance is longer than in the quadratic model, reflecting the fact that a
few large particles segregate to the top at a slower rate, when they are surrounded
by high concentrations of fines, as shown in figure 4. This effect becomes stronger
with increasing γ . The non-convex models with γ = 0.65 and γ = 0.9 (solid and
dot-dashed lines, respectively) exhibit the same behaviour, as well as a change in the
dependence of ξF at φD, which are shown by the black circles in figure 9. This is
the point where the lower shock becomes a semi-shock with an adjacent expansion
fan. At φD, the segregation distance ξF switches from the first to the second formula
in (5.14), which has a much stronger dependence on the inflow concentration φ0
owing to the decreasing rise rate of the large particles at high concentrations of fines.
Moreover, in the limit as γ → 1, the rarefaction fan becomes infinitely wide, because
there is a double zero in the flux function (3.4) and the large-particle rise rate tends
to zero at the outer edge of the expansion fan, wl(1)→ 0.

As the concentration difference between E and F is small, small amounts of
diffusive remixing may cause the two points to be indistinguishable in experiments.
However, the inset of figure 9 shows that the intermediate distance ξE given by (5.8)
also shows increasing behaviour with φ0, and so an experimental measure of the final
segregation distance is predicted to show increasing behaviour.

6. Normally graded inflow
Consider next the normally graded (see e.g. Tucker 2003) inflow problem of

Thornton et al. (2006), where the small particles initially lie on top of the large
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FIGURE 10. Exact solutions for an initially normally graded mixture at the inflow ξ = 0,
where ψA = 1/2 and Sr = 0.5. The cubic flux function (3.4) has been used with (a) γ =
0.35, (b) γ = 0.65 and (c) γ = 0.90. Thick solid lines represent shocks, thick dot-dashed
lines are semi-shocks, whilst thick dashed lines represent the edge of rarefaction fans.
Characteristics are shown with thin solid black lines.

particles. The inflow at ξ = 0 thus satisfies

φ(0, ψ)=
{

1, ψA 6ψ 6 1,
0, 0 6ψ <ψA,

(6.1)

where ψA is the height of the initial discontinuity. The small particles, which are
initially at the top, percolate downwards and accumulate at the bottom, whilst the large
particles at the bottom are squeezed upwards and accumulate at the top. This causes
a transition from the initial normally graded concentration profile to a final inversely
graded concentration profile some distance downstream.

There are three distinct solution structures for the concentration field that are
dependent on the initial discontinuity height ψA and the nature of the flux function
F(φ). These are shown for the cubic flux function (3.4) in figure 10. Convex flux
functions (γ = 0.35) give the simple structure shown in figure 10(a). A rarefaction fan
develops, which separates the small particles above from the large particles below. The
leading-edge characteristics of the fan, φ= 0 and φ= 1, intersect the base and the free
surface at B and C, respectively, and two shocks are generated that eventually intersect
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FIGURE 11. The (γ , ψA) parameter space for the three distinct structures (a–c) shown
in figure 10. There is one solution for (a) convex flux functions (γ 6 0.5), whilst for
non-convex flux functions (γ >0.5) either (b) or (c) may occur. The curve separating these
two states is given by (6.26). Increasing the cubic asymmetry parameter γ , or decreasing
the initial discontinuity height ψA, causes the transition from structure (b) to (c). The
parameter values used in both figures 10 and 13 are marked with crosses.

to create the final reverse-graded state. This is similar to the solution structure for the
quadratic flux derived by Thornton et al. (2006). One key difference is that, for the
quadratic flux, points B and C lie the same distance downstream for ψA= 1/2, but for
the asymmetric flux functions they do not. Non-convex flux functions (γ = 0.65, 0.9)
give rise to two new structures shown in figure 10(b,c). The initial pure phase layers
are separated by a semi-shock between the rarefaction fan and the initial upper layer
of small particles. The expansion fan is always separated from the final upper pure
phase of large particles by a shock; however, it may be separated from the lower
layer of small particles by either a single shock (figure 10b) or a semi-shock with
another adjacent fan (figure 10c), leading to two different structures. When the cubic
flux function is used, the three structures have the (γ , ψA) parameter dependence
shown in figure 11, where regions (a–c) correspond to the three different structures in
figure 10(a–c), respectively. As the cubic asymmetry parameter γ is increased or the
initial discontinuity height ψA is decreased, the structure changes from figure 10(b)
to (c). The three solution structures will be examined in more detail below. It is also
shown how to transform the solutions in velocity-integrated coordinates (ξ , ψ), given
by equation (4.2), back to physical (x, z) space.

6.1. Structure for convex flux functions
The simple structure in figure 10(a) occurs for convex flux functions, such as the cubic
flux function (3.4) with γ 6 0.5. The initial inversely graded layers are separated by
a rarefaction fan centred at point A, whose characteristics are given by

ψ =ψA − SrF′(φ)ξ, for φ ∈ [0, 1]. (6.2)

The φ = 1 characteristic determines point C, where the first large particle reaches
the surface, whilst the φ = 0 characteristic determines point B, where the first small
particle reaches the base. Points B and C have coordinates (ξB, 0) and (ξC, 1)
respectively, where

ξB = ψA

SrF′(0)
= ψA

SrAγ
, (6.3)

ξC = −1−ψA

SrF′(1)
= 1−ψA

SrAγ (1− γ ), (6.4)
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with the general result followed by the result specific to the cubic flux function
(3.4). A shock CF with coordinates (ψCF, ξCF) starts from point C and separates
the rarefaction fan (φ− = φ) from the layer of large particles that accumulates at the
top (φ+ = 0). In the same manner as the derivation of (5.11), the equation for the
rarefaction characteristics (6.2) may be differentiated and combined with the shock
gradient (4.9) to give an implicit equation governing shock CF,

1
ξ

dξ
dφ
= φF′′(φ)

F(φ)− φF′(φ)
. (6.5)

This can be integrated with the initial condition that the shock starts from point C to
give coordinates (ξCF, ψCF) as

ξCF = 1−ψA

Sr(F(φ)− φF′(φ))
, ψCF =ψA − SrF′(φ)ξCF, for φ ∈ [φF, 1], (6.6a,b)

where the characteristic φ=φF in the expansion fan intersects with point F. Similarly,
a shock BF separates the rarefaction fan (φ+ = φ) from the lower layer of small
particles (φ− = 1) with the implicit equation

1
ξ

dξ
dφ
= −(1− φ)F′′(φ)

F(φ)+ (1− φ)F′(φ) . (6.7)

The coordinates (ξBF, ψBF) of BF are found by integrating (6.7) subject to the initial
condition that shock BF starts from point B, yielding

ξBF = ψA

Sr(F(φ)+ (1− φ)F′(φ)) , ψBF =ψA − SrF′(φ)ξBF, for φ ∈ [0, φF]. (6.8a,b)

The two shocks and the φ = φF characteristic meet at point F. An equation for the
concentration φF is obtained by equating (6.6) to (6.8), to give

1−ψA

ψA
= F(φF)− φFF′(φF)

F(φF)+ (1− φF)F′(φF)
= φ2

F(1+ γ − 2γφF)

(1− φF)2(1− 2γφF)
, (6.9)

where the last result is specific to the cubic flux function (3.4). The two shocks
therefore meet at (ξF, ψF), which has coordinates

ξF = 1−ψA

Sr(F(φF)− φFF′(φF))
, ψF = 1−ψA. (6.10a,b)

A third shock FG starts from point F separating the two inversely graded layers, with
coordinates (ξ , ψFG),

ψFG = 1−ψA, ξ > ξF. (6.11a,b)

Similar to (5.5), the final segregated state is independent of F (and hence γ ).

6.2. Structure for non-convex flux functions
The two different solution structures shown in figure 10(b,c) occur for non-convex flux
functions, such as the cubic flux function (3.4) with γ > 0.5. Within the expansion
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fan, small particles percolate downwards and large particles are squeezed upwards, as
before. However, because of the non-convexity, the maximum large-particle rise rate
occurs at concentration φ = φcrit = φC rather than at φ = 1. An expansion over the
interval φ ∈ [0, 1] (as in the convex case) is not possible, because, for φ greater than
φinf , the characteristics overlap with those generated by lower values of φ. Instead, a
semi-shock AC is formed between the initial upper layer of small particles φ+= 1 and
the φ− = 1◦ = φC characteristic at the edge of the fan. Integrating the shock gradient
(4.9) and using the definition of the image point (3.6) implies that the coordinates
(ξ , ψAC) of semi-shock AC are given by

ψAC =ψA − SrF′(φC)ξ . (6.12)

The characteristics of the fan are given by (6.2) with φ ∈ [0, φC]. The φ = 0
characteristic again determines point B for the first small particle to reach the
base, which has coordinates (ξB, 0) given by (6.3). However, semi-shock AC now
governs the position of point C for the first large particle to reach the surface, with
coordinates (ξC, 1), where

ξC =− 1−ψA

SrF′(φC)
= 4γ

1−ψA

SrAγ
. (6.13)

The two different non-convex solutions are dependent on whether the concentration
φ = φF, defined in (6.9), satisfies φF 6 φD or φF > φD. In the former case (shown
in figure 10b), the rarefaction fan (φ− = φ) is separated from the upper layer of
large particles (φ+ = 0) by a shock CF. The shock starts from C, and its coordinates
(ξCF, ψCF) are given by (6.6) with φ ∈ [φF, φC]. A second shock BF also starts from
B and separates the rarefaction fan (φ+ = φ) from the lower layer of small particles
(φ− = 1). Similarly, this has coordinates (ξBF, ψBF) given by (6.8) with φ ∈ [0, φF]. A
final shock FG separates the inversely graded state, with coordinates (ξFG, ψFG) given
by (6.11).

The solution in the latter case (φF > φD) is more complex and gives rise to the
structure shown in figure 10(c). The rarefaction fan (φ− = φ) is separated from the
upper layer of large particles (φ+ = 0) by a shock CE that starts from point C. The
shock gradient (4.9) and the rarefaction characteristics (6.2) can be used to show
that CE has coordinates (ξCE, ψCE) that satisfy (6.6). This is the same equation as
satisfied by the coordinates of shock CF in the non-convex case, but here φ lies in
the range φ ∈ [φE, φC]. A shock BD together with a semi-shock DE and adjacent fan
DEFD separate the initial rarefaction fan (φ+ = φ) from the layer of small particles
that accumulates at the bottom of the flow (φ− = 1). Shock BD starts from B, and
integrating the shock gradient (4.9) shows that BD has coordinates (ξBD, ψBD) that
satisfy (6.8). This is the same equation as the coordinates of shock BF in the non-
convex case, but with φ ∈ [0, φD]. Point D has coordinates (ξD, ψD) given by (6.8)
with φ = φD, where

ξD = ψA

Sr(F(φD)+ (1− φD)F′(φD))
= ψAγ

2

SrAγ (2γ − 1)3
,

ψD = ψA − SrF′(φD)ξD =ψA
(1− γ )2(3γ − 1)

(2γ − 1)3
.





(6.14)

A local semi-shock with an adjacent non-centred expansion fan occurs in the region
DEFD, which separates the rarefaction fan from the layer of small particles below.
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FIGURE 12. A sketch of the non-centred expansion fan arising within the region DEFD,
where each characteristic of the rarefaction is tangential to the semi-shock.

Each incoming characteristic from the rarefaction fan (6.2) intersects semi-shock DE
and generates a new characteristic that lies locally tangent to it. The semi-shock
DE therefore separates each rarefaction characteristic φ+ = φ from its image point
concentration φ−=φ◦. Using the chain rule and the definition of the image point (3.6),
the shock gradient (4.9) can be solved implicitly by differentiating the expansion fan
characteristics (6.2) with respect to φ, to obtain a separable ODE for the semi-shock
DE, i.e.

1
ξ

dξ
dφ
= F′′(φ)

F′(φ◦)− F′(φ)
. (6.15)

For a general flux function,

d
dφ
(F′(φ◦)− F′(φ))= F′′(φ◦)

dφ◦

dφ
− F′′(φ), (6.16)

but, since F′′(φ◦) dφ◦/dφ 6= 0, (6.15) cannot normally be integrated to give a simple
logarithmic form as with (5.11), (6.5) and (6.7). Instead, (6.15) must be numerically
integrated with the initial condition that the semi-shock starts at point D. However,
the cubic flux function (3.4) satisfies

d
dφ
(F′(φ◦)− F′(φ))= d

dφ

(
− 1

4γ
(3γφ − (1+ γ ))2

)
=−3

4
F′′(φ), (6.17)

and so (6.15) may be integrated exactly. As semi-shock DE starts from point D, it
has the implicit coordinates (ξDE, ψDE),

ξDE = ψAγ
2

SrAγ

(
256

(2γ − 1)(3γφ − (1+ γ ))8
)1/3

, ψDE =ψA − SrF′(φ)ξDE, (6.18a,b)

for φ ∈ [φD, φE]. The non-centred fan is formed from each of the φ◦ characteristics
that are local tangents to the semi-shock DE and are given by the straight lines

ψ =ψDE(φ)− SrF′(φ◦)(ξ − ξDE(φ)), for φ ∈ [φD, φE]. (6.19)

This forms the beautiful structure sketched in figure 12.
Semi-shock DE meets the upper shock CE at point E. Equating ξDE = ξCE using

(6.19) and (6.6) gives both the coordinates (ξE, ψE) and concentration φE. A further
shock EF separates the upper layer of large particles (φ+ = 0) from the local
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FIGURE 13. Exact solutions for an initially normally graded mixture in physical (x, z)
coordinates with a Bagnold velocity profile (6.34). As in figure 10, ψA=0.50 (which maps
to zA= 0.676), Sr= 0.5, and the cubic flux function (3.4) has been used with (a) γ = 0.35,
(b) γ = 0.65 and (c) γ = 0.90. Thick solid lines represent shocks, thick dash-dot lines are
semi-shocks whilst thick dashed lines represent the edge of rarefaction fans. Characteristics
are shown with thin solid black lines. The velocity is monotonically increasing with height,
so the large-particle layer at the top is thinner to conserve mass.

rarefaction fan (φ− = φ◦). Using the chain rule, the shock gradient (4.9) can be
rearranged to give

dψ
dφ◦
=−Sr

F(φ◦)
φ◦

dξ
dφ◦

, (6.20)

whilst the rarefaction fan characteristics (6.19) may be differentiated implicitly with
respect to φ◦ to give

dψ
dφ◦
− dψDE

dφ◦
=−Sr

d2F(φ◦)
d(φ◦)2

(ξ − ξDE)− Sr
dF(φ◦)

dφ◦

(
dξ
dφ◦
− dξDE

dφ◦

)
. (6.21)

By combining (6.20) and (6.21), the coordinates of EF can be shown to satisfy the
inhomogeneous differential equation

− d
dφ◦
[(F(φ◦)− φ◦F′(φ◦))ξ ] = φ◦ d

dφ◦

(
ψDE(φ)

Sr
+ F′(φ◦)ξDE(φ)

)
. (6.22)
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The image point concentration φ◦ has been treated as the independent variable, with
the relationship between φ and φ◦ governed by (3.6). Equation (6.22) is a first-order
differential equation of the form

− d
dφ◦

( f (φ◦)ξ)= φ◦ d
dφ◦

g(φ◦, φ), (6.23)

and since (6.18) expresses DE exactly for the cubic flux function, (6.22) can be
integrated by parts with the boundary condition that φ = φE, φ◦ = φ◦E at ξ = ξE. This
gives the implicit coordinates (ξEF(φ), ψEF(φ)) of EF as

ξEF(φ) = g1(φE)ξE + g2(φ)− g2(φE)

g1(φ)
,

ψEF(φ) = ψDE(φ)− SrF′(φ◦)(ξEF(φ)− ξDE(φ)),



 (6.24)

where φD 6 φ 6 φE and the functions g1(u) and g2(u) are defined as

g1(u)= Aγ
4γ

u(1+ γ − γ u)2, g2(u)= ψAγ

Sr

(
4

2γ − 1

)1/3

u(3γ u− (1+ γ ))−2/3.

(6.25a,b)
The φ = 1 characteristic that is tangential at point D meets the upper layer at point
F, whose coordinates (ξF, ψF) are given by (6.24) with φ = φD. A final shock FG
separates the final inversely graded flow, with coordinates (ξFG, ψFG) given by (6.11).

The change between the two non-convex structures (figure 10b,c) occurs when point
D coincides with point E and point F. For the cubic flux function, equating ψF (6.10)
with ψD (6.14) determines the curve in figure 11 as

ψA = 8γ 3 − 12γ 2 + 6γ − 1
11γ 3 − 19γ 2 + 11γ − 2

. (6.26)

6.3. Comparison with the symmetric model
The asymmetric flux functions lead to several differences in the solution for normally
graded inflow that are not found in the structure for the quadratic flux derived
by Thornton et al. (2006). Firstly, although the convex flux structure shown in
figure 10(a) appears similar to that of the convex quadratic flux (2.14), the positions
of points B and C are modified due to the particles percolating downwards and rising
upwards at different rates. Thornton et al. (2006) found the ratio of ξC to ξB to be
dependent on the initial discontinuity height ψA, i.e.

ξC

ξB
= (1−ψA)

ψA
, (6.27)

but, using (6.3) and (6.4), for convex flux functions,

ξC

ξB
=−F′(0)

F′(1)
(1−ψA)

ψA
= 1
(1− γ )

(1−ψA)

ψA
, (6.28)

which, for the cubic flux function (3.4), has an additional dependence on γ . In the
limit as γ → 0 the quadratic result is recovered. This asymmetry is also seen with
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the non-convex flux functions in figure 10(b,c), but now several large particles rise
together at concentration φcrit = φC and reach the top at C. From (6.13), this gives

ξC

ξB
=− F′(0)

F′(φC)

(1−ψA)

ψA
= 4γ

(1−ψA)

ψA
. (6.29)

The ratio ξC/ξB given by (6.28) and (6.29) could provide a sensitive experimental
test for measuring the asymmetry between the maximum large- and small-particle
velocities. For example, consider run 22 in the chute flow experiment of Wiederseiner
et al. (2011), with zA=0.7. The velocity data were found to fit an exponential velocity
profile

u= β exp(βz)
exp(β)− 1

, (6.30)

with β = 3.3, which maps zA to ψA = 0.374 through transformation (4.2). Using the
φ = 0 contour in figure 7(a) of their paper, it is possible to estimate ξB = 0.17 and
ξC = 0.53, which give

ξC/ξB

(1−ψA)/ψA
= 1.86. (6.31)

Note that this ratio is greater than the ratio 1 of the quadratic flux (6.27), but less
than 2. Assuming the cubic flux (3.4), comparing (6.31) with (6.28) implies that

γ = 0.46. (6.32)

A second difference between the quadratic flux model and the asymmetric flux
functions is the presence of semi-shocks and adjacent expansion fans, such as DEFD
in figure 10(c) for non-convex flux functions. A similar semi-shock and adjacent fan
AEFA also develops in the homogeneous case in figure 7(b,c). In both cases, these
are a direct result of the decreasing rise velocity of large particles above concentration
φ = φC.

6.4. Solution in physical coordinates
The solution in physical coordinates (x, z) may easily be derived from the mapped
coordinates (ξ , ψ) by prescribing a downslope velocity field u = u(z) and inverting
the coordinate transformation (4.2). A Bagnold velocity profile typically develops
for steady uniform flows (e.g Bagnold 1954; Silbert et al. 2001; GDR MiDi 2004;
Rognon et al. 2007), which in dimensional variables is

u= 2
3

Iζ
d

√
gΦ cos ζ (h3/2 − (h− z)3/2), (6.33)

where Iζ is the constant inertial number at a given inclination angle ζ (GDR
MiDi 2004; Jop et al. 2005; Gray & Edwards 2014), Φ is the solids volume
fraction and d is a measure of the average diameter of the grains. Applying the
non-dimensionalisation (2.17), with the velocity magnitude U chosen so that ψ(1)= 1,
gives the non-dimensional downstream velocity

u(z)= 5
3(1− (1− z)3/2). (6.34)

The transformation to mapped coordinates (4.2) gives

ψ = 5
3 z− 2

3(1− (1− z)5/2). (6.35)
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This transformation cannot be inverted to produce an explicit function for z(ψ);
however, contour plots of the results are easy to produce by numerically inverting the
normal coordinate, and are shown in figure 13. The inverse transformation effectively
stretches the vertical coordinate, and transforms straight lines in mapped (ξ , ψ)

coordinates to curves in physical (x, z) coordinates. Shock FG is the only line to
remain straight after the transformation, but it is translated to a new height z(1−ψA).
The velocity is monotonically increasing towards the surface, and thus there is also
an increasing mass flux with height. In order to conserve mass, layers in regions of
high velocity near the surface will be thinner than layers in regions of lower velocity
near the base. Hence, for the example shown in figure 10, the layer of large particles
at the top is the same thickness as the layer of small particles at the bottom in (ξ , ψ)
space. After the transformation to physical coordinates, the large-particle layer at the
surface is thinner, whilst the small-particle layer is expanded. The transformation
leaves the downstream coordinate unchanged, and so horizontal coordinates of points
A–G and the final segregation distances are left unaffected.

7. Discussion and conclusions

This paper generalises the particle-size segregation model of Gray & Thornton
(2005) to asymmetric flux functions, in order to model the observation that a single
small particle will percolate down through a matrix of large particles faster than a
single large grain will rise up through a matrix of fines. A general class of asymmetric
flux functions is considered, whose maximum amplitude is skewed towards lower
concentrations of fines, and which may be either convex or non-convex, as shown
for the cubic case in figure 3. For convex flux functions, the maximum percolation
velocity of the fines, which occurs in the limit as the concentration of fines tends to
0 %, is enhanced above that obtained with the simple quadratic flux used by Gray
& Thornton (2005). Conversely, the maximum rise rate of large particles occurs in
the limit of 100 % fines, and is decreased from that of the quadratic case, as shown
in figure 4. For non-convex flux functions, the maximum rise rate of large particles
occurs at an intermediate concentration, which directly leads to the formation of more
complex solutions that include semi-shocks and non-centred expansion fans, as well
as shocks and centred fans.

In the limit of no diffusive remixing, the method of characteristics is used to derive
exact steady-state concentration solutions for the homogeneous and normally graded
inflow problems of Gray & Thornton (2005) and Thornton et al. (2006). The results
are illustrated for the case of the cubic flux function in figures 7, 10 and 13. In
each case, there are three qualitatively different forms of the solution, which are
dependent on the inflow concentration distribution and whether the flux function
is convex or non-convex. The parameter dependence of the solutions is illustrated
in figures 8 and 11. For convex flux functions, the solutions look very similar to
those constructed by Gray & Thornton (2005) and Thornton et al. (2006), except
that the position of key points in the solution are now dependent on the inflow
composition and the strength of asymmetry. In particular, the asymmetry causes
the final segregation distance for homogeneous flow to be dependent on the inflow
concentration (5.14), and in the normally graded problem the ratio of the positions
for the first large particle to reach the surface and the first small particle to reach
the base, (6.28) and (6.29), is dependent on the skewness. Comparing the theory
to the experiments of Wiederseiner et al. (2011) suggests that γ = 0.46, which is
close to the boundary between convex and non-convex flux functions. For non-convex
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flux functions, semi-shocks with adjacent centred rarefaction fans (such as AEFA in
figure 7) and non-centred rarefaction fans (such as DEFD in figure 10) appear, which
will also not be completely smeared out by diffusive remixing.

The asymmetric theory of segregation analysed in this paper can easily be extended
to account for multi- or polydisperse mixtures (Gray & Ancey 2011; Marks et al.
2012), and flows that include erosion and deposition (Gray & Ancey 2009; Fan et al.
2014). Although a cubic form has been used in this paper to illustrate the effects of an
asymmetric flux function, the actual flux function may also take a more complicated
form, potentially depending on a number of flow parameters (Bridgwater 1994). For
example, the amount of asymmetry is likely to be physically dependent on the size
ratio of the particles, with similar sized particles displaying less asymmetry, but more
asymmetry experienced as the spontaneous percolation limit is approached (Bridgwater
& Ingram 1971; Savage & Lun 1988). However, this is still to be experimentally
verified, and the actual functional form for the segregation flux and its parameter
dependences are open questions.
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3. UNDERLYING ASYMMETRY WITHIN

PARTICLE SIZE SEGREGATION

This chapter is a reprint of the article titled “Underlying Asymmetry within Particle

Size Segregation” by K. van der Vaart, P. Gajjar, G. Epely-Chauvin, N. Andreini, J. M.

N. T. Gray, and C. Ancey, published on page 238001, volume 114 of Physical Review

Letters in 2015. The first page shows the front cover on which the article featured.

Copyright 2015 by the American Physical Society. The digital object identifier (DOI)

for this article is: http://dx.doi.org/10.1103/PhysRevLett.114.238001.

Additional theoretical material that was used to match the asymmetric segrega-

tion model of chapter 2 with the experimental data is presented in 3.2. Note that

the asymmetry parameter in this chapter is κ, which is directly equivalent to asym-

metry parameter γ in chapters 2 and 4.
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We experimentally study particle scale dynamics during segregation of a bidisperse mixture under
oscillatory shear. Large and small particles show an underlying asymmetry that is dependent on the local
particle concentration, with small particles segregating faster in regions of many large particles and large
particles segregating slower in regions of many small particles. We quantify the asymmetry on bulk and
particle scales, and capture it theoretically. This gives new physical insight into segregation and reveals a
similarity with sedimentation, traffic flow, and particle diffusion.

DOI: 10.1103/PhysRevLett.114.238001 PACS numbers: 45.70.Mg, 05.45.-a, 47.57.Gc

The natural tendency of granular media to self-organize
when agitated or sheared produces a rich diversity of
complex and beautiful patterns [1–3]. Although it is
counterintuitive that the components of a heterogeneous
mixture will readily separate, this property has serious
technical implications as the cause of product nonuniform-
ity in many industrial processes [4–6] and also plays a
pivotal role in the enhanced run-out of large scale geo-
physical granular flows, such as debris flows, pyroclastic
flows, and snow avalanches [7–10]. A firm knowledge of
the segregation process is thus of universal importance.
Although there has been considerable recent progress

in developing continuum based segregation models for
sheared granular flows [11–16], the individual particle
dynamics are still poorly understood. Discrete particle
method (DPM) simulations [17–20] produce a wealth of
microscale information, but are models in themselves. It is
vital to directly measure particle segregation dynamics in
real experiments, but such an analysis is difficult with
conventional techniques such as binning and sidewall
observation [21–24]. Nonintrusive imaging techniques,
such as x-ray tomography [25] and refractive index-
matched scanning (RIMS) [26,27] allow examination of
the interior of a granular medium, with RIMS recently
developing into a powerful tool for examining monodis-
perse and bidisperse flows [28–30]. In particular, the work
of Harrington et al. [30] on the emergence of granular
segregation demonstrates how particle scale analysis can
give new physical insights.
In this Letter, we analyze particle scale dynamics during

segregation of a bidisperse mixture under oscillatory shear.
We find that the behavior of small and large particles
exhibits an asymmetry related to the local particle concen-
tration, with small grains moving faster through regions of
many large particles and large particles rising slower
through regions of many small particles. This asymmetry
is quantified on both particle and bulk length scales, and

it is shown how to incorporate the behavior within the
theoretical framework.
Methods.—A shearbox 51 mm deep and 37 mm wide is

filled to a height h ¼ 87� 3 mm with a bidisperse mixture
of borosilicate glass spheres (ρp ¼ 2.23 g=cm3) with
diameters dl ¼ 8 and ds ¼ 4 mm. The larger particles
are placed at the bottom, the surface flattened, and the
smaller particles placed on top. The sidewalls oscillate
while remaining parallel, applying a periodic shear γðtÞ ¼
γ0 sinðωtÞ [31] as shown in Fig. 1. The corresponding
shear rate _γðtÞ¼ γ0ωcosðωtÞ, frequency ω ¼ 2π=T rad s−1,
period T ¼ 13 s, and strain amplitude γ0 ¼ tan θmax. The
sidewalls displace to a maximum angle θmax ¼ �30°,
giving a maximum shear rate of _γ0 ¼ γ0ω and a maximum
grain displacement amplitude A ¼ hγ0. The angle is
decreased to θmax ¼ �10° for the particle trajectory data
in order to slow down the segregation and increase the
temporal resolution. Nondimensional time t̂ ¼ t=T corre-
sponds to the number of elapsed cycles. We follow a
sample using RIMS, with the index-matched liquid a
mixture of benzylalcohol and ethanol (viscosity
μ ¼ 3 mPa s) containing a fluorescent dye (rhodamine).
The low viscosity of the interstitial liquid means that fluid

FIG. 1 (color online). Left: The experimental setup. A raw data
image is shown and a cross section of a reconstructed sample with
3 and 6 mm beads. Right: cross sections at different times during
an experiment.

PRL 114, 238001 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
12 JUNE 2015

0031-9007=15=114(23)=238001(5) 238001-1 © 2015 American Physical Society



drag forces are small compared to both gravitational forces
and the applied shear ( Stokes number > 1 [32]). The
mixture is lit with a 532 nm laser sheet perpendicular to
the oscillating walls, giving a stack of vertical cross
sections. A scan is performed after each full oscillation
with the shearbox in the upright position. The images were
processed using convolution [33] to give three dimensional
particle positions, which are coarse grained in order to
determine a continuous volume fraction [34]. Some side-
wall effects exist, with small particles preferentially located
near the stationary vertical walls, but this does not affect
the overall segregation. The horizontal particle motion is
diffusive; hence, the concentration is spatially averaged to
give a uniform concentration in the x-y plane. We observe
no convection rolls [35], although for jϕmaxj > 45° geo-
metrical squeezing was seen to cause convection.
Results.—The typical behavior is shown in Fig. 1: The

initial state with large particles on the bottom evolves to
a final state with large particles on top, because small
particles sink and large particles rise. Interestingly, some
large particles remain below when all the others have
reached the top. These particles are not stuck but rise at a
slower rate than the ones that have reached the top before
them. Although this has been inferred before, it has not yet
been explained [24].
We define a segregation time t̂s as the time needed for the

vertical centers of mass of the two species to reach a steady
state, as shown in Fig. 2(a). We record t̂s for mixtures
with varying global volume fraction of small particles
Φð%Þ ¼ Vs=ðVl þ VsÞ, while keeping the total mixture
volume constant. Figure 2(b) shows that t̂s scales linearly
with Φ; i.e., with more small particles in the mixture the
segregation is slower [20]. Similar trends were observed
over the entire range of angles that can be accessed in our
setup. This behavior is usually given a two-part explan-
ation: At low Φ, small particles move slower when there are
more small particles [36]. At high Φ, it takes a longer time
for large particles to travel to the top when the layer of small

particles above them is thicker [20,24]. In both explan-
ations the behavior of the other species is ignored. So how
do these explanations combine at an intermediateΦ? A clue
is given by Ref. [24], which reported that for a Φ ¼ 50%
mixture the transition from the state with small particles
on top to a mixed state was faster than the subsequent
transition from the mixed state to the final segregated state.
This points to two separate processes that are likely to be
related to the distinct behavior of small and large particles.
Particle dynamics.—We are thus motivated to study a

single small particle segregating in a mixture of large
particles and a single large particle segregating in a mixture
of small particles, which we refer to as Φ ¼ 0þ% and Φ ¼
100−% mixtures, respectively. The trajectories of the two
particles, shown in Fig. 3(a), are quite different: (i) the
large particle segregates roughly 3 times slower than the
small particle; and (ii) the large particle rises smoothly at an
almost constant speed, whereas the small particle shows a
stepwise motion with steps of the order of dl. This suggests
that the small particle falls through gaps in the large particle
matrix under gravity, typically traversing just a single layer.
In order to more precisely understand the nature of these

trajectories, we study the displacement after τ̂ cycles:
Δrðτ̂Þ ¼ rðt̂þ τ̂Þ − rðt̂Þ. The root mean square displace-
ment (RMSD) σðτ̂Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔr2ðτ̂Þi

p
is plotted in Fig. 3(b).

The dynamics are diffusive (logarithmic slope 1=4) for both
particles at short time scales and superdiffusive (logarith-
mic slope 1=2) at longer time scales. The crossover length
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FIG. 2 (color online). (a) Time evolution of the vertical center
of mass position (ð1=nÞPn

i¼1 zi) for large and small particles
in Φ ¼ 25% (black), 50% (dark gray), and 75% (light gray)
mixtures. θmax ¼ �30°. (b) Segregation time t̂s as a function of Φ;
solid line is a fit for the symmetric model with Sr ¼ 0.016,
while the dashed line is a fit for the asymmetric model with
Sr ¼ 0.030 and κ ¼ 0.89.

FIG. 3 (color online). Individual particle dynamics for
small particles (blue, gray) and large particles (black) with
θmax ¼ �10°. (a) Vertical trajectories of a small particle segregat-
ing in a Φ ¼ 0þ% mix; and a large particle segregating in a
Φ ¼ 100−% mix. Inset: Particle movement in the horizontal
plane. (b) RMSD σðτ̂Þ for different mixtures (see legend), with
the solid line a fit of σs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0τ̂ þ w2

s τ̂
2

p
at Φ ¼ 50% (shifted for

clarity). The dotted lines show the slopes 1=2 and 1. Inset: wνðΦÞ
for large (ν ¼ l) and small particles (ν ¼ s). (c)–(e) ς for single
cycles in Φ ¼ 0þ%, 50%, and 100−% mixtures, respectively.
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scale between the diffusive and segregation (superdiffusive)
regimes for the small particle is approximately dl, which
corresponds to the typical segregation step size of the small
particle. The crossover length scale for the large particle is
lower, roughly 0.2dl (0.4ds), and is likely to be related to
the scale of the rearrangements of the surrounding small
particles. To confirm this, we measure the RMSD per cycle
ς ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
hΔr2i

p
, as shown in Figs. 3(c) and 3(e). The typical

value of ς for the single large particle lies just below ς for
the surrounding small particles [Fig. 3(e)]. Although the
displacements ς for the single small particle experiences
large variations, as a result of falling through layers, the
mean value is of the same order as that of the surrounding
large particles [Fig. 3(c)].
The plot of σðτ̂Þ for a Φ ¼ 50% mixture in Fig. 3(b)

shows that the curves lie between those for Φ ¼ 0þ%
and Φ ¼ 100−%, but with a comparable amount of segre-
gation. Fitting each of the curves with σνðτ̂Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0τ̂ þ w2

ντ̂
2

p
with diffusion coefficient D0 allows us to

examine the segregation velocities wν for large (ν ¼ l) and
small (ν ¼ s) particles at different Φ. The inset of Fig. 3(b)
shows that wsðΦÞ decreases with increasing Φ, whereas
wlðΦÞ increases to a maximum at Φ ¼ 50% and then
decreases, although not to zero, at Φ ¼ 100−%. To under-
stand the peak in wlðΦÞ, we plot ς for Φ ¼ 50% in
Fig. 3(d). The values of ς for both small and large particles
increase with respect to the Φ ¼ 100−% mix; however, the
large particle movement is still less compared to the small
particles.
At this point we can hypothesize an explanation for the

trend in Fig. 2(b): the individual dynamics of small and
large grains have a different significance on the overall
segregation dynamics at different Φ. At high Φ, the
significant dynamics are of the “slow” large particle, which
are governed by the scale of rearrangements of the
surrounding small particles. At low Φ, it is the “fast” small
particle that is significant, as it can make big segregation
steps between large particle layers. At an intermediate Φ
both processes combine; small particles slow down,
because layering disappears, while large particles speed
up, because the scale of rearrangements increases.
Displacement statistics.—To study this behavior at

the particle scale for each species (ν ¼ l; s), we measure
the conditional probabilities PðΔzνjϕÞ of the vertical
displacement Δzν given that the local small particle
volume fraction is ϕ. Note that shear gradients [37] do
not play a role, because of the linear shear profile that is
applied. Here, ϕ ¼ 0 corresponds to regions of only large
particles and ϕ ¼ 1 to only small particles. The results in
Figs. 4(a) and 4(b) demonstrate that large particles are less
likely to segregate at high ϕ compared to small particles
segregating at low ϕ. In the following, we will refer to this
as “asymmetry.” Similar to the data for wlðΦÞ in the inset of
Fig. 3(b), we observe that the large particles have their
greatest displacement at an intermediate ϕ.

The effect of asymmetry at a mesoscale can be seen in
the temporal development of ϕðz; t̂Þ for aΦ ¼ 50%mixture
in Fig. 5(a). Two important features exist: (i) small particles
reach the bottom of the flow faster compared to large
particles reaching the top; (ii) large particles appear to rise
predominantly together (indicated by the band of low ϕ).
The first feature is easily explained by asymmetry: small
particles beginning the experiment near the interface

0

0.5

1

0

0.5

1

0 20 40 60 80 100 120
0

0.5

1

0 0.5 1.0

FIG. 5 (color online). (a) Temporal development of ϕðz; t̂Þ
versus normalized flow height z=h for a Φ ¼ 50% mixture
with θmax ¼ �30°. (b)–(c) Theoretical predictions from Eq. (4).
(b) Prediction using the symmetric flux function (2), with
Sr ¼ 0.016 and Sr=Dr ¼ 20.9 [38]. (c) Prediction using the
asymmetric flux function (3), with Sr ¼ 0.030, Sr=Dr ¼ 29.6
and κ ¼ 0.89.

FIG. 4 (color online). (a)–(b) Conditional probabilities
PðΔzljϕÞ and PðΔzsjϕÞ. The probability increases from blue
to red. White curves are the mean values hΔzli and hΔzsi.
(c)–(d) jhΔzlij=A and jhΔzsij=A as a function of ϕ, with
error bars indicating the standard error of the mean. Dashed
and solid lines are plots of Eq. (5) for quadratic and cubic
flux functions FðϕÞ with Sr ¼ 0.008 and Sr ¼ 0.015,
respectively. The values of Sr were scaled to account for
the lower shear rate γ0ω at θmax ¼ �10°.

PRL 114, 238001 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
12 JUNE 2015

238001-3



between the two species quickly travel to the bottom
through the large particle matrix, in accordance with
PðΔzsjϕÞ. The second feature is possibly linked to the
large particles having a maximum segregation speed at an
intermediate concentration.
Theoretical comparison.—Current approaches to mod-

eling size segregation use an advection-diffusion equation
for ϕ [39]:

∂ϕ
∂t þ divðϕuÞ − ∂

∂z ðqFðϕÞÞ ¼
∂
∂z

�
D
∂ϕ
∂z

�
; ð1Þ

where u is the bulk velocity field, q ¼ qðωγ0; gÞ is the
mean segregation speed, g is gravity, D is the diffusivity,
and FðϕÞ is the flux function, which determines the
dependence of the segregation flux on ϕ. The simplest
flux function has a quadratic form

FðϕÞ ¼ ϕð1 − ϕÞ: ð2Þ

This is employed in a number of models [12–14] and is
symmetric about ϕ ¼ 0.5, dictating that small and large
particles behave identically, but in opposite directions.
Recently, asymmetric flux functions were introduced by
Ref. [40] with the simplest being a cubic form

FðϕÞ ¼ Aκϕð1 − ϕÞð1 − κϕÞ; ð3Þ

where asymmetry parameter 0 ≤ κ < 1, and normalization
constant Aκ gives the same amplitude as the symmetric flux
function. The applied shear gives a velocity profile
u ¼ (uðz; tÞ; 0; 0). In combination with the lateral spatial
uniformity of ϕ, this means that the transport term in Eq. (1)
is zero. Equation (1) reduces to

∂ϕ
∂ t̂ −

∂
∂ẑ ðSrFðϕÞÞ ¼

∂
∂ẑ

�
Dr

∂ϕ
∂ẑ

�
; ð4Þ

where ẑ ¼ z=A, and Sr ¼ qT=A, Dr ¼ DT=A2 are non-
dimensional segregation and diffusive-remixing coeffi-
cients, respectively. The symmetric and asymmetric
models were least squares fitted to the data in Fig. 2(b)
to obtain Sr ¼ 0.016 for the symmetric model and
κ ¼ 0.89, Sr ¼ 0.030 for the asymmetric model.
Integrating Eq. (4) gives the ϕ evolution in Figs. 5(b)
and 5(c). Qualitatively, Fig. 5(c) reproduces the experi-
mental result on some critical points: (i) the difference in
time between the arrival of small particles at the bottom and
large particles at the top of the flow; (ii) the collective rising
of large particles; and (iii) a lower ϕ in the bottom half of
the flow near the end of the experiment, indicating that
some large particles are still inside the small particle matrix,
segregating very slowly. These features are not found in the
symmetric result in Fig. 5(b). The theoretical displacements
per cycle are given by

jΔẑlj ¼ Sr
FðϕÞ
1 − ϕ

; jΔẑsj ¼ Sr
FðϕÞ
ϕ

; ð5Þ

and are shown alongside the experimental data in Figs. 4(c)
and 4(d). The trend is clearly better predicted by the
asymmetric flux, which is able to reproduce both the peak
in jhΔzlij around ϕ ¼ 0.5 and the nonlinear decrease of
jhΔzsij. We attribute the discrepancy of jhΔzsij at low ϕ to
tracking errors, when small particles move more than their
radius and their displacement is not recorded, thereby
lowering the measured value.
Discussion.—We analyze particle motion in a segregat-

ing bidisperse mixture under oscillatory shear and discover
an underlying asymmetry in the behavior of large and small
particles. The small particle motion is steplike, falling down
through the large particle matrix typically one layer at a
time. On the other hand, the large particle motion is
smoother but slower, and linked to the scale of rearrange-
ments of the surrounding small particles. The asymmetric
motion of the large and small particles combine to give a
characteristic dependence of the particle segregation speeds
on the local volume fraction. Large particles segregate
slower in the presence of many small particles, while small
particles segregate faster in the presence of many large
particles. We also observe that large particles move
quickest when close to other large particles at intermediate
concentrations, a process reminiscent of a collective motion
[41]. The underlying asymmetry also manifests at meso and
bulk scales. In the development of ϕðz; t̂Þ, small particles
reach the bottom of the flow faster than large particles
reach the top. The segregation time increases linearly when
a mixture contains a larger fraction of small particles.
Although there is no direct evidence that the observed
asymmetry persists for continuous shear, Staron and
Phillips [20] report that the segregation time under steady
shear also increases linearly with the total concentration of
small particles. These insights give a new understanding of
segregation in sheared systems, with the dynamic behavior
of two species being inherently different.
Models for segregation have typically considered the

motion of the large and small grains to be identical.
However, an experimentally determined cubic flux [40]
brings asymmetric behavior for the two species and gives
good agreement on both particle and bulk scales. This
draws parallels with the use of asymmetric flux functions
to model asymmetry in sedimentation [42], traffic flows
[43,44], and diffusion across membranes [45]. For exam-
ple, in the sedimentation of suspensions, particles settle
faster when traveling together, but the settling velocity goes
to zero more rapidly than a linear decrease at high
concentrations [42]. Similarly, the velocity of cars in traffic
approaches zero nonlinearly at high car densities [44].
The commonality between these processes is their discrete
nature, but interestingly, size segregation is the only
process that consists of two discrete species.
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Further work is needed to analyze particle scale motion
for continuously sheared flows, e.g., down chutes and
within rotating drums, to determine whether asymmetry
persists and what form the segregation flux takes. The
distinct segregation dynamics of the two species also leads
to questions as to a possible relation with other dynamic
processes such as dynamic heterogeneity [46].
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3.2 Additional theoretical material

This section provides further material to explain the how the segregation model

of chapter 2 was used to the derive the results presented in the preceding paper

“Underlying Asymmetry within Particle Size Segregation”.

Experimental observations from the shearbox apparatus indicate that the particle-

particle contacts are the dominant factor in determining the particle dynamics,

drawing similarities with dense granular flows (Ancey et al., 1999; GDR Midi, 2004;

Cassar et al., 2005). The continuum segregation equation, derived in chapter 2 for

dense granular flows, was therefore considered to be suitable for modelling segre-

gation in this environment. As a result of the velocity field u = (u(z, t),0,0), and

the lateral spatial uniformity of the concentration field, the full segregation equation

(1.12) reduces to
∂φ

∂t
− ∂

∂z
(qF (φ)) = ∂

∂z
(D ∂φ

∂z
), (3.1)

where the function F (φ) explicitely describes the concentration dependence. Non-

dimensionalising time t by the the period T , and the vertical height z by the maxi-

mum amplitude A gives

∂φ

∂t̂
− ∂

∂ẑ
(SrF (φ)) = ∂

∂ẑ
(Dr

∂φ

∂ẑ
), (3.2)

where ẑ = z/A and t̂ = t/T . The non-dimensional segregation and diffusive remixing

coefficients are Sr = qT /A and Dr = DT /A2 respectively. As there is no motion of

the particles across the base (ẑ = 0) or across the surface of the flow (ẑ = 1), a no-flux

boundary condition may be applied

SrF (φ) +Dr
∂φ

∂ẑ
= 0 (ẑ = 0,1). (3.3)

The segregation flux function F (φ) is assumed to take the cubic form

F (φ) = Aκφ(1 − φ)(1 − κφ), (3.4)

where the asymmetry parameter is 0 ⩽ κ ⩽ 1, and the normalisation constant

Aκ =
27κ2

4(−2κ3 + 3κ2 + 3κ − 2 + 2(κ2 − κ + 1)3/2)
(3.5)
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Figure 3.1: The final segregation time t̂s as a function of the initial small particle
concentration. These were derived from the exact solutions to equation (3.6) under
the non-diffuse limit Dr = 0, with Sr = 1. The quadratic flux (3.10), shown with a
grey solid line, has a parabolic-like dependence on the initial concentration Φ, that is
symmetric about Φ = 50%. The maximum segregation time also occurs at Φ = 50%.
For asymmetric convex flux functions, with 0 ⩽ κ ⩽ 0.5, the dependence is still
parabolic-like, except that the maximum segregation time occurs at a concentration
Φ that is increased towards Φ = 100%. For example, the black dashed line shows
the dependence for κ = 0.35. For convex cubic flux functions with values of the
asymmetry parameter 0.5 < κ ⩽ 1 there are different behaviours depending on Φ
in relation to the critical initial small particle concentration Φc, shown with black
markers. As can be seen for the curves γ = 0.65 and γ = 0.75, shown with black
dash-dotted lines and black solid lines respectively, small initial concentrations Φ ⩽
Φc share the parabolic-like dependence of the non-convex fluxes. However, for
higher initial concentrations, Φ > Φc, there is a linear dependence on the initial
concentration. As the asymmetry parameter is increased, Φc decreases, meaning
the linear behaviour becomes dominant.

gives the same maximum amplitude of 1/4 as for the quadratic flux function. This

is the simplest member of the family of functions described in section 3 of chap-

ter 2, and is entirely equivalent to the cubic function used there, except that the

asymmetry parameter in this case is κ rather than γ.

3.2.1 Final segregation time

As explained in chapter 2, the theoretical limit Dr = 0 provides a useful simplifi-

cation since it allows the effects of the asymmetry to be evaluated. In this limit,
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equation (3.2) becomes
∂φ

∂t̂
− ∂

∂ẑ
(SrF (φ)) = 0. (3.6)

This equation is the same as the steady-state velocity-independent segregation equa-

tion (4.3)∗ of chapter 2, with t̂ in place of ξ and ẑ in place of ψ. Thus the segregation

time in this system is entirely equivalent to the final segregation distance examined

in chapter 2. In particular, the results of section 6 from chapter 2 can be used to

predict the segregation time of a normally graded initial particle distribution as a

function of the initial small particle concentration Φ = 1 − ψA, where ψA is the ini-

tial interface height between the large and small particles. Using equation (6.10)∗

of chapter 2 for the final segregation distance ξF, the final segregation time t̂s for a

convex cubic flux with 0 ⩽ κ ⩽ 0.5 is given by

t̂s =
Φ

SrAκφ2
F(1 + κ − 2κφF)

, (3.7)

where concentration φF is defined by

Φ

1 −Φ
=

φ2
F(1 + κ − 2κφF)

(1 − φF)2(1 − 2κφF)
. (3.8)

As shown in figure 11 of chapter 2, the solution structure for convex flux functions

with 0.5 < κ ⩽ 1 can change depending on the initial interface height ψA. Thus the

critical initial small particle concentration Φc at which the two solutions change is

given by equation (6.26)∗ of chapter 2, namely

1 −Φc =
8κ3 − 12κ2 + 6κ − 1

11κ3 − 19κ2 + 11κ − 2
. (3.9)

When Φ ⩽ Φc, the final segregation time is given by equation (3.7) above. However,

when Φ > Φc, the final segregation time is given by equations (6.24)∗ and (6.25)∗ of

chapter 2, noting that Φ = 1 − ψA.

The equivalent result for the quadratic flux F (φ) = φ(1 − φ) can be found in

equation (3.16) of Thornton et al. (2006),

t̂s =
1

Sr
(
√

1 −Φ +
√

Φ)2
. (3.10)

This result is recovered from equations (3.7–3.8) in the limit κ → 0. As shown in

figure 3.1 with the grey solid line, the final segregation time t̂s for the quadratic

flux (3.10) has a parabolic like-dependence on the initial concentration Φ, with the
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maximum segregation time occurring for Φ = 50%. The segregation time for convex

flux functions (3.7), with low values of the asymmetry parameter κ, has a similar

dependence, except an asymmetry is introduced with the maximum segregation

time shifted further towards Φ = 100%. This can be seen for γ = 0.35 with the black

dashed line. At higher values of the asymmetry parameter 0.5 < κ ⩽ 1, when the

flux function is non-convex, there are two different behaviours that are dependent

on the initial small particle concentration Φ. At low initial small particle concentra-

tions, Φ ⩽ Φc, the dependence is parabolic-like, and qualitatively similar to the de-

pendence for the convex flux function. At higher concentrations Φ > Φc, however,

there is a linear dependence between the final segregation time t̂s and the initial

small particle concentration Φ. The linear dependence is due to the influence of the

decreasing large particle velocity in the limit as the small particle concentration φ

tends toward unity. Figure 3.1 shows the dependencies for κ = 0.65 and κ = 0.75,

shown with black dash-dotted lines and black solid lines respectively. The values

of Φc are indicated with black markers for both of these values of κ. As the asym-

metry parameter κ is increased, the critical initial concentration Φc (3.9) decreases,

and so the linear behaviour becomes dominant. It is worthwhile to note that Staron

& Phillips (2014) reported a linear relationship between the segregation time and

the total concentration of small particles in their discrete particles simulations of a

two-dimensional chute flow.

A least squares fit was performed on the experimental data shown in figure 2 of

the paper to determine Sr = 0.016 for the quadratic flux, and Sr = 0.030, κ = 0.89 for

the cubic flux.

3.2.2 Steady state balance between segregation and

diffusive remixing

The segregating flow governed by equation (3.2) tends to a steady state, in which

there is a balance between segregation that acts to separate the constituents, and dif-

fusive remixing that acts to reduce concentration gradients at the interface between

the constituents. In this steady state, the non-dimensional segregation equation
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(3.2) reduces to

− ∂

∂ẑ
(SrF (φ)) = ∂

∂ẑ
(Dr

∂φ

∂ẑ
) (0 < ẑ < 1), (3.11)

with the no-flux boundary condition (3.3) at ẑ = 0,1. Following Gray & Chugunov

(2006), integrating (3.11) with respect to ẑ shows that the normal flux SrF (φ) +

Dr∂φ/∂ẑ is equal to a constant across the depth of the flow. The boundary condition

(3.11) has the exact same form, implying that this constant is zero, and so

SrF (φ) +Dr
∂φ

∂ẑ
= 0 (0 ⩽ ẑ ⩽ 1). (3.12)

This ODE can be integrated by separating variables, giving

ẑ = C − Dr

Sr
∫

1

F (φ)
dφ, (3.13)

where C is a constant of integration. Using the cubic flux (3.4), this gives

ẑ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

C − Dr

Sr

1

Aκ(1 − κ)
ln(φ

(1−κ)(1 − κφ)κ
(1 − φ)

) (ẑ ≠ 1)

C − Dr

Sr

1

Aκ
(ln( φ

1 − φ
) + 1

1 − φ
) (ẑ = 1)

, (3.14)

whilst Gray & Chugunov (2006) previously derived the equivalent result for the

quadratic flux as

ẑ = C − Dr

Sr
ln( φ

1 − φ
) . (3.15)

As explained in Wiederseiner et al. (2011) and Gray & Ancey (2015), constant C

may be determined by imposing an integral constraint. Integrating the segregation

equation (3.2) across the flow depth and applying the no-flux boundary condition

implies that the integral

I = ∫
1

0
φdẑ (3.16)

is independent of time t̂. In particular, this means that I is equal to the initial small

particle concentration Φ. For the particular case of the quadratic flux, it is possible

to invert the steady state for the quadratic flux (3.15) to give φ = φ(ẑ, C). The in-

tegration constant C can be found by evaluating I , giving φ = φ(ẑ,Φ). This is not,

however, possible in the general case because of the complex dependence ẑ = ẑ(φ).

Instead, Gray & Ancey (2015) showed that it is possible to reverse the direction of

integration in (3.16) by defining an extended solution

ẑe = max(0,min(1, ẑ)), (3.17)
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giving the alternative expression for I

I = ∫
1

0
ẑe dφ. (3.18)

This integral can be numerically evaluated through quadrature, and the constant of

integration C found through iteration.

The experimental data shown in figure 5 of the paper can be seen to tend to-

wards a steady state after t̂ = 100. This steady state was least squares fitted with the

quadratic and cubic steady state expressions, (3.15) and (3.14) respectively, to give

Sr/Dr = 20.9 for the quadratic and Sr/Dr = 29.6 for the cubic. Note that the value of

κ = 0.89 determined from the segregation time (§ 3.2.1) was used for the asymmetry

parameter.
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4. ASYMMETRIC BREAKING

SIZE-SEGREGATION WAVES IN DENSE

GRANULAR FREE-SURFACE FLOWS

This chapter is a copy of an article titled “Asymmetric breaking size-segregation waves

in dense granular free-surface flows” by P. Gajjar, K. van der Vaart, A. R. Thornton, C.

G. Johnson, C. Ancey and J. M. N. T. Gray. The article was published in volume 794

of the Journal of Fluid Mechanics (2016), on pages 460–505. The first page shows

the front cover on which the article featured. Permission for reproduction granted

by Cambridge University Press. The digital object identifier (DOI) for this article is

http://dx.doi.org/10.1017/jfm.2016.170.
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Debris and pyroclastic flows often have bouldery flow fronts, which act as a natural
dam resisting further advance. Counter intuitively, these resistive fronts can lead to
enhanced run-out, because they can be shouldered aside to form static levees that
self-channelise the flow. At the heart of this behaviour is the inherent process of
size segregation, with different sized particles readily separating into distinct vertical
layers through a combination of kinetic sieving and squeeze expulsion. The result is
an upward coarsening of the size distribution with the largest grains collecting at the
top of the flow, where the flow velocity is greatest, allowing them to be preferentially
transported to the front. Here, the large grains may be overrun, resegregated towards
the surface and recirculated before being shouldered aside into lateral levees. A key
element of this recirculation mechanism is the formation of a breaking size-segregation
wave, which allows large particles that have been overrun to rise up into the faster
moving parts of the flow as small particles are sheared over the top. Observations
from experiments and discrete particle simulations in a moving-bed flume indicate
that, whilst most large particles recirculate quickly at the front, a few recirculate very
slowly through regions of many small particles at the rear. This behaviour is modelled
in this paper using asymmetric segregation flux functions. Exact non-diffuse solutions
are derived for the steady wave structure using the method of characteristics with
a cubic segregation flux. Three different structures emerge, dependent on the degree
of asymmetry and the non-convexity of the segregation flux function. In particular,
a novel ‘lens-tail’ solution is found for segregation fluxes that have a large amount
of non-convexity, with an additional expansion fan and compression wave forming
a ‘tail’ upstream of the ‘lens’ region. Analysis of exact solutions for the particle
motion shows that the large particle motion through the ‘lens-tail’ is fundamentally
different to the classical ‘lens’ solutions. A few large particles starting near the bottom
of the breaking wave pass through the ‘tail’, where they travel in a region of many
small particles with a very small vertical velocity, and take significantly longer to
recirculate.

† Email address for correspondence: parmesh.gajjar@alumni.manchester.ac.uk
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1. Introduction

Debris and pyroclastic flow deposits often show evidence of bouldery fronts that
have a high proportion of large particles (e.g. Sharp & Nobles 1953; Johnson 1970,
1984; Takahashi 1980; Costa & Williams 1984; Pierson 1986; Iverson 2014; Turnbull,
Bowman & McElwaine 2015). Figure 1 shows large boulders deposited at the front
of a debris flow in Arizona, USA. These large grains tend to be more resistive to
downslope motion than the fines, and consequentially have a significant influence on
the overall flow dynamics by acting as a ‘dam’ that resists the flow behind (Pierson
1986). The advancing, more mobile, fine grains from within the interior of the flow
(Major & Iverson 1999) shoulder the large particles at the front to the sides (Johnson
et al. 2012), forming coarse-grained levees that channelise the flow. The inside of
this channel is lined by a layer of deposited fine grains, further reducing the friction
and increasing the run-out distance (Kokelaar et al. 2014). All of this behaviour is
readily reproduced in both large- and small-scale experiments (Iverson & Vallance
2001; Iverson et al. 2010; Johnson et al. 2012). In particular, Pouliquen, Delour &
Savage (1997) observed that the interaction of the resistive front with the mobile
interior also causes a lateral instability where the flow-front fingers and breaks into
a number of different confining channels (Sharp & Nobles 1953; Pouliquen et al.
1997; Woodhouse et al. 2012). The development of the bouldery fronts is thus key
to understanding how segregation feeds back on the bulk flow field.

A key component within the formation of coarse-grained fronts and lateral levees is
the inherent process of size segregation that is common to all polydisperse granular
media. Whilst flowing, granular mixtures dilate sufficiently to allow the flow to
act like a sieve that naturally sorts the different sized constituents. Small gaps in
the grain matrix allow the finer grains to preferentially percolate downwards under
gravity, whilst there is a return flow of coarse grains towards the surface. The exact
mechanism for the rising of large grains is under investigation (van der Vaart et al.
2015), although the net result is an upward coarsening in the particle-size distribution
that is often called inverse grading. For example, a bidisperse mixture containing just
two grain sizes would separate into two separate layers in the absence of diffusion,
with the large particles on top of the small ones, as shown in figure 2(a). The surface
layers have the highest velocities, and so the larger particles are transported to the
front of the flow. These coarse grains may then be pushed en masse at the front
if massive enough (Pouliquen & Vallance 1999), or otherwise may be overrun by
the advancing flow. They are able to rise up back towards the surface as they are
resegregated, creating a complex recirculating motion that connects the upstream
inversely graded body of the flow to the coarse-rich flow front. As more large grains
are supplied towards the front, the coarse-grained margin grows in size, with the
interface propagating forward at a slower speed than the advancing front (Gray &
Kokelaar 2010a,b). The front may obtain a steady size in two dimensions if there is
no further upstream supply of large particles, or alternatively, if the upstream supply
of large particles is matched by the rate of deposition on the lower basal surface
(Gray & Ancey 2009). The front may also obtain a finite-size steady state in three
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FIGURE 1. Photograph of the front of a debris flow that has stopped in the channel of
Rattlesnake Creek, Arizona, USA. The large boulders seen here in the front are typical
of many debris and pyroclastic flows, with larger particles segregating upwards to the
faster moving surface layers and preferentially transported towards the front, where they
accumulate. Photo courtesy of C. Magirl and USGS.

dimensions by shouldering the large grains, transported to the front, laterally outwards
to the sides to produce static coarse-grained levees (Johnson et al. 2012; Kokelaar
et al. 2014).

1.1. Recirculating particle motion
The first real insights into the structure of the recirculation zone were provided
by Pouliquen et al. (1997) and Pouliquen & Vallance (1999), who used a moving
camera to approximately measure the lateral recirculating motion of a line of large
black crushed fruit stones placed on the surface of a flow of translucent glass
beads. Their observations, however, lacked spatial resolution, and further direct
experimental observation of the recirculation has been challenging due to its complex
time dependence. The recirculation zone propagates quickly downstream at speed
uwave as the front advances forward at speed ufront, meaning that there is the difficulty
of capturing the motion using a camera moving with the recirculation zone. Long
chutes are also required before a steady recirculation regime emerges.

An alternative approach is to use the moving-bed flume set-up shown in figure 3,
that is similar to that used by Davies (1990). The flume is 104 cm in length with
a rough 10 cm wide upward moving conveyor belt positioned between the four
stationary vertical walls. The inclination of the channel was set at 19.8◦ to establish
a uniform flow height along the channel. Higher or lower angles were found to
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FIGURE 2. (a) A vertical section through a steadily propagating avalanche travelling
down an inclined plane. In the body of the flow, the large grains segregate to the upper
layers, where the velocity u(z) is greatest, and hence are transported towards the front
of the avalanche, where they are overrun, resegregated upwards and recirculated to form
a coarse-rich particle front. A complex recirculating motion is created that links the
vertically segregated flow in the rear of the avalanche from the coarse-grained front, with
the recirculating region known as a ‘breaking size-segregation wave’ (Thornton & Gray
2008). Although the front increases in size as more large particles are supplied from the
inversely graded flow upstream, the recirculation region shown with dotted lines reaches a
steady structure that travels at the average speed uwave. (b) A convenient way of studying
this steady recirculation regime is to use a moving-bed flume, which can establish a steady
motion within a short chute length. The belt moves upstream at a speed ubelt, driving an
upstream flow in the lowest layers, whilst the upper layers move downstream under gravity.
This generates a net velocity profile û(z)= u(z)− uwave and is the same as examining the
recirculation zone within (a) from a frame advecting at speed uwave. There is no upstream
supply of large particles in this configuration (b), and so, provided that the segregation
and diffusion rates are constant (Thornton & Gray 2008), it is mathematically equivalent
to the subset of figure (a) marked by the dotted lines. Large particles rise towards the
surface, and are sheared towards the downstream end of the flume. Some large grains are
driven back upstream by the belt, segregate back towards the surface and are recirculated.

cause an accumulation towards the front or rear of the channel, respectively. The
belt moves upstream at a velocity ubelt = 72 mm s−1. This generates the experimental
configuration shown schematically in figure 2(b), where the lower layers of the flow
are forced upstream by the belt, while the upper layers move downstream under
gravity. While this flow is not itself inversely graded, it is mathematically equivalent
to the section of an inversely graded avalanche shown in figure 2(a), provided that the
segregation and diffusion rates are constant (Thornton & Gray 2008). The absence



464 P. Gajjar and others

LaserMotor
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FIGURE 3. A schematic diagram of the moving-bed flume set-up. The flume is 104 cm in
length and 15 cm high, with a rough 10 cm wide conveyor belt at the base that moves
upstream at velocity ubelt = 72 mm s−1. This generates the flow configuration sketched
in figure 2(b), with the particles in the lower layers of the flow forced upstream by the
belt, whilst those in the upper layers of the flow move downstream under gravity. The
entire set-up is submerged in a larger tank containing a mixture of benzyl-alcohol and
ethanol. This acted as the index matched interstitial fluid, and had a viscosity µ=3 mPa s
and fluid density of 995 kg m−3. The motor unit was mounted outside of the tank and
drove the belt through a chain mechanism. A dye (rhodamine) was added to the fluid
and the flow illuminated with a laser sheet of wavelength 532 nm. A camera positioned
at one of the glass side walls captured the temporal evolution, with particles appearing as
dark circles. The diameters of these circles could be tracked in time to determine whether
the particle was small or large. An example snapshot at one moment in time, and the
time-averaged concentration fields are shown in figure 6.

of the layer of large particles also allows a steady state to develop within the
experimental configuration. Both the experimental configuration and the full problem
are assumed to be two-dimensional, meaning that there are no side-wall effects. Just
as in the full problem, the large grains in the experimental configuration (figure 2b)
initially segregate upwards and are sheared towards the downstream end of the flume,
as shown in the normal exposure photograph in figure 4(a). However, the motion of
the belt forces some large grains to be carried upstream, where they subsequently
lie below small grains. The large grains resegregate upwards, and once they reach
the surface, they are carried back towards the downstream end of the flume. The
oblique view in figure 5 looking upstream from the end of the flume clearly shows
the accumulated large particles, and resembles the bouldery front shown in figure 1.
This moving-bed flume allows the structure of the steady recirculation regime to be
examined in greater detail. For example, the long time exposure photograph in 4(b),
taken with an exposure time of 133 s, illustrates the time-averaged concentration field
of the recirculation zone.
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(a)

(b)

FIGURE 4. Photographs showing the steady recirculation regime established within the
104 cm long moving-bed flume set-up sketched in figure 3. The particle diameters were
5 and 14 mm. The normal exposure photograph (a) shows the large blue and white
marbles collecting towards the right, forming a coarse-rich flow region at the downstream
end of the flume, whilst the long exposure photograph (b) shows a time-averaged
concentration field and the structure of the breaking size-segregation wave. An exposure
time of 133 s was used to capture (b).

The individual motion of the particles on the centre line was revealed using
refractive index matched scanning (‘RIMS’: Wiederseiner et al. 2011a; Dijksman
et al. 2012; van der Vaart et al. 2015). Spherical borosilicate glass beads of density
2230 kg m−3 and diameters 14 and 5 mm were used, with the volume ratio of large
particles to small particles being 2 : 5. As shown in figure 3, the entire flume set-up
was submerged in a tank containing a mixture of benzyl-alcohol and ethanol, which
acted as the index matched interstitial fluid of viscosity µ = 3 mPa s, with a fluid
density of 995 kg m−3. The motor unit for the belt was positioned outside of the
tank and drove the belt through a system of chains. A fluorescent dye (rhodamine)
was added to the liquid, which was excited by a laser sheet of wavelength 532 nm
in a thin plane parallel to the flow direction. As the particles contain no dye, they
appear as dark circles on a bright background. The result is a cross-sectional image
of the interior of the flow, which is captured through the glass side wall using a
high-speed camera. The laser and camera were positioned to capture the section of
the flow containing the recirculation zone. The dark circles are tracked over time,
with the minimum and maximum diameters used to determine whether that circle
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FIGURE 5. An oblique upstream view from the surface of steady-state coarse-rich front
established in the moving-bed flume of figure 3. The large blue and white marbles
congregate towards the front of the picture, with the smaller clear glass beads towards
the rear.

corresponds to a small or large particle. The large size ratio between the grains
minimised identification errors, although there was a small possibility that a large
particle may be mistaken for a small particle. This, however, would only happen if
the particle was sliced close to its edge and never moved closer to the plane of the
laser. A typical snapshot of the particle motion is shown in figure 6(a), where it
can be seen that there are a few large particles in regions of many small particles
at the upstream (left) end of the flow. These large particles are seen to move very
slowly, compared with the majority of the large particles which recirculate very
quickly towards the front. Figure 6(c) shows a time-averaged concentration plot,
which was averaged over a 40 min period, with 1 image taken every 2 s. The slow
movement of the large particles through the upstream region of small particles lowers
the concentration there, and causes the ‘white’ ‘tail’-like region.

It is worthwhile considering what influence the interstitial fluid has on the particle
behaviour. The presence of a fluid (rather than air) not only modifies the interstitial
pore pressures, but also couples the stress carried by the particles to that carried by
the fluid flowing through gaps in the grain matrix (Iverson & LaHusen 1989; Iverson
1997, 2005). This coupling is particularly significant in unsteady flows, since local
changes in the particle volume fraction allow large excess pore pressures to develop,
which in turn feedback on the granular motion (du Pont et al. 2003; Muite, Hunt &
Joseph 2004; Pailha, Nicolas & Pouliquen 2008; Pailha & Pouliquen 2009). However,
for steady, dense granular flows such as those sketched in figure 2, the large number
of particle–particle contacts mean that frictional interactions are still dominant in



Asymmetric breaking size-segregation waves 467

0

50

0

10

0

50

0

10

0

1

600 700 800 900 1000

600 700 800 900 1000

100 150 200 250 300

100 150 200 250 300

z 
(m

m
)

z 
(m

m
)

z

x (mm)

x (mm)

x

0 0.5 1.0

(a)

(b)

(c)

(d)

(e)

14 mm

FIGURE 6. (a) An experimental snapshot of the recirculation zone, captured using the moving-bed
flume of figure 3 with refractive index matched scanning. The white label indicates the length
scale of 14 mm. (b) Structure of the recirculation zone found using DPM simulations. The fixed
base particles are shown in grey. Both the experimental and simulation results show several large
particles positioned towards the rear, where they are surrounded by many small particles. These
large particles are seen to move very slowly, and take a long time to recirculate. (c) Shows the
experimental time-averaged concentration field, which was produced by averaging the individual
particle positions over a 40 min period, with 1 image every 2 s. The time-averaged concentration
field for the simulations was produced by coarse graining all of the particle positions from 749
subsequent time frames, and is shown in (d). Both of the time-averaged concentration plots indicate
a ‘tail’ upstream, where the concentration is lower due to the slow motion of a few large grains.
This is similar to asymmetric behaviour observed within a linear shear cell (van der Vaart et al.
2015), and motivates a continuum breaking wave structure with an asymmetric flux function, shown
in (e) for a cubic flux. The solid lines mark the boundaries of the recirculation zone, with two
distinct ‘lens’ and ‘tail’ regions (see § 2). The downstream ‘lens’ region with a strong green hue
is where most of the large particles recirculate, whilst the red hue of the upstream ‘tail’ region
shows how only a few large particles recirculate through that area. The theory does not account for
spatial velocity variations, diffusive remixing or differential particle friction, and finite-size effects are
also significant. These may all contribute to the difference in the ‘tail’ structure between the theory
and the experiments and simulations. Without calibrating the segregation flux for this particular flow
regime, it is remarkable that the asymmetric flux produces a ‘tail’ region, and it is of interest to
further understand the asymmetric breaking-wave structure and particle recirculation within it. In all
of the above plots, the lower belt moves from right to left, with gravity acting to cause particles to
flow downstream towards the right.
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determining the rheological behaviour (Ancey, Coussot & Evesque 1999) even when
an interstitial fluid is present. Cassar, Nicolas & Pouliquen (2005) showed that, in
steady flows submerged in water, at least 75 % of the overburden pressure is borne
by the contact network. They also showed that the same rheology used to describe
dense steady aerial flows (GDR Midi 2004) also applies to immersed flows, with
the interstitial fluid changing the time scale of the particle rearrangements. This is
consistent with the experimental results of Vallance & Savage (2000) and the theory
of Thornton, Gray & Hogg (2006) who both showed that the role of the interstitial
fluid in flows containing different sized constituents is to modify the segregation
time scales. These results would suggest that the physical phenomena observed in
the experiments above, with a few large particles recirculating very slowly in regions
of small particles, are indicative an underlying asymmetry in the particle motion
that occurs whether the flow is dry or submerged. Further experimental work, using
techniques such as X-ray tomography (e.g. McDonald, Harris & Withers 2012), is
needed to compare the particle scale dynamics in dry flows with those containing an
interstitial fluid.

Discrete particle method (DPM) simulations of a moving bed-flume set-up were also
performed using the MercuryDPM code (MercuryDPM.org; Thornton et al. 2013a,b).
A dry bidisperse mixture of spherical particles was used, with all of the particles of
the same (non-dimensional) density ρ∗ =π/6, but of two different (non-dimensional)
diameters, ds = 1 and dl = 2.4, for small and large particles, respectively. All of the
simulation parameters were non-dimensionalised so that g = 1. A frictional spring-
dashpot model (Cundall & Strack 1979; Weinhart et al. 2012) with linear elastic and
linear dissipative contributions was used for both the normal and tangential forces.
The tangential force models the effects of particle surface roughness, and its spring
stiffness was taken to be 2/7 of the spring stiffness for the normal direction. The
tangential force also truncates so that it is always less than 1/2 of the normal force.
The particles all had the same coefficient of restitution rc= 0.1538, which was chosen
to be less than typical known values for glass (∼0.9) in order to model the dissipative
effects of the interstitial fluid removing energy from the system. The contact time for
all head on collisions was fixed at 0.0054, with the collision properties chosen to be
different for small/small, small/large and large/large collisions so that both the contact
time and the coefficient of restitution were the same even in the mixed case. Further
details of the precise DPM implementation may be found in Thornton et al. (2012b)
and Weinhart et al. (2012). The simulations were conducted in a box of length 300ds

with fixed end walls and width 8.4ds. The side walls were periodic in order to bring
the simulations closer to the assumptions of the analytic model in figure 2(b), which
is two-dimensional and has no side-wall effects. A small inclined wall was placed
between the base and the vertical upstream wall in order to prevent small particles
being crushed by the wall or shooting away from it. This was seen to only affect
the dynamics very close to the wall, and did not affect the recirculation zone. A
rough moving base was created in several steps. Firstly, particles of diameter db =
1.7 were stuck randomly to a horizontal plate. Particles of diameter db were slowly
dropped onto this plate and allowed to settle. Once a thick layer of height 12db was
produced, a slice of particles was taken whose centres lay between 9.3db and 11db.
These particles were endowed with infinite mass and inclined at an angle of 23◦ to
form the base for the moving-bed flume simulations. The layer is thick enough to
ensure that no flowing particles can fall through the rough base during the simulations.
More details of this base creation process can be found in Weinhart et al. (2012)
whereas a detailed description of different bed creation methods and their effect on the
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macroscopic friction experienced by the flow can be found in Thornton et al. (2012a).
Before each time step 1t= 10−4√ds/g, the base was moved upstream by a distance
ubelt1t= 1.5× 10−4ds. The system was allowed to evolve until a steady recirculation
zone was formed.

Figure 6(b) shows a snapshot from the simulations, which have a very similar
structure to the experimental results: most large particles recirculate quickly at the
front but a few large particles recirculate slowly at the rear. This behaviour is also
evident in the time- and width-averaged concentration plot shown in figure 6(d), which
was produced by employing the micro–macro coarse-graining technique (Goldhirsch
2010; Weinhart et al. 2013) on the individual particle positions from 749 subsequent
time steps. The new extension by Tunuguntla, Thornton & Weinhart (2015), based
on a mixture theory formulation (Morland 1992), allowed the (partial) densities for
the bulk (ρ), small (ρs) and large particles (ρ l) to be separately extracted, with the
small particle concentration defined as ρs/ρ, i.e. the local small particle material
density over the local granular material density. The coarse-graining method used
two-dimensional Gaussian functions at each of the particle positions and generated
the continuum field at every point in space; however, for ease of computing, the
data is shown on a 250 × 250 grid. As was seen in the experimental concentration
field in figure 6(c), the slow moving large particles have lowered the upstream
concentration and produced a white ‘tail’ protruding backwards from the main region
of recirculation. This qualitative similarity between the concentration field of the
simulations that were laterally periodic (figure 6d) and the concentration field of the
experiments (figure 6c) indicates that there are only minimal effects arising from the
side walls and justifies the two-dimensional approximation of the analytic solution.
Dry simulations, using a much higher restitution coefficient, also gave a similar
concentration field, indicating that the behaviour is not an artefact of the presence
of the fluid nor the exact particle properties. Despite the fact that no attempt was
made to calibrate the simulations and experiments, both show very similar behaviour
using different sized particles in different sized flumes. The presence of the ‘tail’, in
which large particles recirculate very slowly through regions of many small particles,
points towards a fundamental asymmetry in the interactions between the large and
small particles. Recently, van der Vaart et al. (2015) uncovered a similar asymmetry
in a linear shear cell, and showed how the asymmetry could be modelled using a
continuum approach.

1.2. Continuum segregation equation for bidisperse mixtures
Non-dimensional continuum models for segregation in bidisperse mixtures (e.g.
Bridgwater, Foo & Stephens 1985; Savage & Lun 1988; Bridgwater 1994; Dolgunin
& Ukolov 1995; Gray & Thornton 2005; Gray & Chugunov 2006; Thornton et al.
2006; May, Shearer & Daniels 2010) all share a similar advection–diffusion structure

∂φ

∂t
+∇ · (φu)− ∂

∂z
(SrF(φ))= ∂

∂z

(
Dr
∂φ

∂z

)
, (1.1)

where the z coordinate is the upward pointing normal to the flume bed, the x
coordinate points down the flume and the y coordinate points horizontally across
the flume bed. The bulk velocity field u = (u, v, w) has components in the above
directions, the small particle concentration is φ, and Sr and Dr are the non-dimensional
segregation and diffusive-remixing coefficients, respectively. As the typical length
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and height of the avalanche are L and H, and magnitudes of the downstream and
segregation velocities are U and Q, the non-dimensional segregation coefficient
Sr = QL/(HU) represents the ratio of the typical segregation time scale Q/H to the
typical downstream transport time scale U/L. Similarly, the non-dimensional diffusion
coefficient Dr = DL/(H2U) represents the ratio of the typical diffusion time scale
D/H2 to the typical downstream transport time scale U/L, with D being the diffusivity
between the two particle species. The large particle concentration is 1− φ since the
solids volume fraction is assumed to be uniform and constant throughout the flowing
layer (Rognon et al. 2007). The first term on the left-hand side in (1.1) describes the
temporal evolution, whilst the second term describes the advection with the bulk flow.
The segregation is captured by the third term, with F(φ) the segregation flux and the
negative sign indicating that there is a net motion of small particles downwards. The
segregation flux is often assumed to be the product of the small and large particle
concentrations,

F(φ)= φ(1− φ), (1.2)

and has the property that segregation ceases when the concentration reaches zero
(pure large phase) or unity (pure small phase). The right-hand side of equation (1.1)
reduces the sharp concentration shocks that develop between the two species,
and models the diffusion of one species into the other that results from the
random-walk-like behaviour of the grains. In many flows, this is small compared
to the segregation (Gray & Hutter 1997; Dasgupta & Manna 2011; Wiederseiner
et al. 2011b; Thornton et al. 2012b) and so the non-diffuse solution in which Dr = 0
is a useful approximation, with (1.1) reducing to a scalar hyperbolic equation. A
full review of the derivation, history and applications of (1.1) can be found in Gray,
Gajjar & Kokelaar (2015).

1.3. Asymmetry between large and small particle motion
Recent experiments by Golick & Daniels (2009) and van der Vaart et al. (2015) have
uncovered an underlying asymmetry in the behaviour of large and small grains during
segregation, with a characteristic dependence on the local relative volume fraction of
small particles. Within their annular ring shear experiments, Golick & Daniels (2009)
inferred that large particles were segregating very slowly in regions of many small
particles, but were not able to further explain this observation. Using a classical linear
shear cell (Bridgwater 1976) and the ‘refractive index matched scanning technique’
(Wiederseiner et al. 2011a; Dijksman et al. 2012), experiments by van der Vaart et al.
quantified on both bulk and particle scales how large particles rise slower in regions of
many small particles compared to small particles percolating down through a region
of many large particles. They also showed that the large particle velocity displayed
a peak at approximately φ = 0.55, proving that the coarse grains rise quickest as a
group. Gajjar & Gray (2014) showed that the normal constituent velocities associated
with the segregation equation (1.1) are

wl(φ)=w+ Sr
F(φ)
1− φ , ws(φ)=w− Sr

F(φ)
φ

, (1.3a,b)

with both velocities uniquely determined by the geometry of the flux function F(φ)
at every concentration φ. The velocity of the large particles wl(φ) (1.3a) is directly
proportional to the gradient of the chord, namely the gradient of the straight line
segment (Clapham & Nicholson 2009), joining (1, 0) with (φ, F(φ)). Similarly, the



Asymmetric breaking size-segregation waves 471

velocity of the small particles ws(φ) is directly proportional to the gradient of the
chord joining (0,0) with (φ,F(φ)). A pair of these two chords for φ=φmax are shown
in figure 7(b). Since the quadratic segregation flux (1.2) utilised by many segregation
models is symmetric about φ = 0.5 (figure 7a), it gives linear segregation velocities
for the large and small grains

wl(φ)=w+ Srφ, ws(φ)=w− Sr(1− φ). (1.4a,b)

The maxima of these velocities are equal in magnitude (figure 7c), and so (1.2) is
unable to capture the asymmetry measured by van der Vaart et al. (2015). In order
to model the asymmetric behaviour between large and small grains, Gajjar & Gray
(2014) introduced a new class of flux functions with the following properties: (i) F(φ)
is skewed towards φ = 0, with a maximum occurring at 0< φmax < 1/2; (ii) F(φ) is
normalised to have the same amplitude as the quadratic flux (1.2); and (iii) F(φ) has
at most one inflexion point φinf in the interval (φmax, 1). Although there are other ways
of normalising the class of flux functions, e.g. by the area, there were no qualitative
differences between the different methods. The simplest flux function fitting all of the
above requirements is the cubic form

F(φ)= Aγφ(1− φ)(1− γφ), (1.5)

where γ is the asymmetry parameter and Aγ is a normalisation constant. Note that the
limit γ→ 0 of (1.5) recovers the symmetric quadratic flux (1.2). For small amounts of
asymmetry, 0 6 γ 6 0.5, F(φ) is convex up (Clapham & Nicholson 2009), whilst for
greater amounts of asymmetry 0.5<γ 6 1, F(φ) is non-convex with a single inflexion
point

φinf = 1+ γ
3γ

. (1.6)

As shown in figure 7(c), the cubic functions (1.5) are able to reproduce the
asymmetric behaviour that a small particle will percolate down more quickly at
low φ (figure 7e) than a large particle rises upwards at high φ (figure 7g). In
addition, figure 7(b) shows how the presence of an inflexion point (1.6) means that
the chord joining (φ, F(φ)) with (1, 0) initially has an increasing gradient as φ
increases from 0 to φM, and a decreasing gradient thereafter. Thus, the non-convex
flux functions display a maximum in the large particle velocity at an intermediate
concentration φM (figure 7f ). This behaviour will be known as the collective motion
of the large particles.

Gajjar & Gray (2014) were able to examine the influence of asymmetry on the
segregation process by constructing exact solutions to the non-diffuse (Dr = 0) hyper-
bolic segregation equation (1.1) using the method of characteristics (e.g. Whitham
1974; Billingham & King 2001). Concentration φ is constant along characteristic
curves, which are also simply known as characteristics. The characteristics combine
to form distinct features in the solution, such as rarefaction fans, shocks, semi-shocks
and compressions, with physical definitions of these features provided in appendix
A. Characteristics may diverge and form an expansion fan, with a smoothly varying
concentration field, or converge and form a shock with a sharp jump in concentration
from the rearward (−) side to the forward (+) side. The propagation of the shock
surface zs(t, x, y) is governed by

∂zs

∂t
+ u

∂zs

∂x
+ v ∂zs

∂y
−w=−Sr

JF(φ)K
JφK , (1.7)
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FIGURE 7. There is an intrinsic geometric relationship between the segregation flux F(φ) shown
in (a), and its segregation velocities wν (1.3) shown in (c). At any concentration φ, the gradient of
the chords (straight line segment) joining (φ, F(φ)) with (1, 0) and (0, 0) are proportional to the
velocities (1.3) of the large and small particles, respectively. These chords are illustrated in (b) for
φ= φmax = φR. The quadratic flux (1.2) is symmetric about φ= 0.5, and thus gives linear segregation
velocities (1.4) that have the same magnitude. The cubic flux is skewed towards φ = 0 with a
maximum occurring at 0<φmax = φR < 1/2, and is normalised by (2.8) to have the same amplitude
as the quadratic flux. This gives asymmetric segregation velocities, with a single small particle (e)
having a greater velocity that a single large particle (g). For higher amounts of asymmetry, measured
by the asymmetry parameter γ , the cubic flux has an inflexion point at φinf = (1+ γ )/3γ . It is this
inflexion point which causes the large particle velocity to have a peak at an intermediate concentration
φM, with large particles moving quickest when in close proximity to other large particles ( f ). (d) The
image point φo (1.8) of concentration φ is defined as the point at which the gradient of the tangent
to the flux function F′(φo) is equal to the gradient of the chord joining φ to φo on F. These
pairs of concentrations {φ, φo} (filled black circles) cause the formation of semi-shocks, where only
the characteristics of concentration φ collide with shock on one side, whilst the characteristics of
concentration φo lie tangential to the shock on the other side. Two pairs of concentrations {1, 1o=φM},
and {φE, φ

o
E = 1} (open circles) are particularly important in the solutions, with the chords tangential

at φ = φM and φ = 1 respectively. Note that the segregation flux in (b) and (d) is the cubic flux
(1.5) with γ = 0.9.
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with ‘jump’ brackets Jf K = f+ − f− denoting the discontinuity in f across the shock
(Gray, Shearer & Thornton 2006). Note that the right-hand side of (1.7) is proportional
to the gradient of the chord on flux F(φ) between φ = φ− and φ = φ+ (Gajjar &
Gray 2014). The characteristics usually collide with both sides of a shock, but the
non-convex cubic flux functions give rise to a special type of shock, known as a
semi-shock (Rhee, Aris & Amundson 1986), where characteristics only collide with
one side of the shock and are tangential to it on the other. The image point φo of
concentration φ is defined as the point at which the gradient of the tangent to the
flux function F′(φo) is equal to the gradient of the chord joining φ to φo on F, with
the shock condition (1.7) giving the relation

F′(φo)= F(φ)− F(φo)

φ − φo
. (1.8)

By this definition, the characteristics of concentration φo lie tangential to the shock,
whilst the characteristics of concentration φ collide with the other side. For the
cubic flux function (1.5), the relationship (1.8) between concentrations φ and φo

simplifies to

φo = 1
2

(
1+ γ
γ
− φ

)
. (1.9)

An example pair of concentrations {φ, φo} is shown with closed black circles in
figure 7(d). It is possible that the characteristics of concentration φo may collide with
another semi-shock; characteristics of concentration (φo)o = φoo would lie tangential
to this semi-shock on the other side. An example of the relationship between φ,
φo and φoo is illustrated in figure 8. Two pairs of concentrations {1, 1o = φM}, and
{φE, φ

o
E = 1} are of particular importance in the exact solutions, with

1o = φM = 1
2γ

and φE = 1− γ
γ

, (1.10a,b)

using the short hand notation 1o=φo|φ=1. As shown by the open circles in figure 7(d),
the chord between (φM, F(φM)) and (1, 0) is tangential to the segregation flux F at
φ = φM, whilst the chord between (φE, F(φE)) and (1, 0) is tangential to F at φ = 1.
Concentration φM has the physical significance that it is the concentration at which the
large particles reach their maximum velocity and is important in the solution structure
described in § 2.2, whilst concentration φE is important in the structure described in
§ 2.3, and determines which of the two non-convex solutions is formed.

Tunuguntla, Bokhove & Thornton (2014) showed that asymmetry causes the
distance for complete segregation of an initially homogeneous mixture to become
dependent on the initial conditions, and Gajjar & Gray (2014) specifically found the
distance to be dependent on the inflow concentration, with a higher proportion of
fines increasing the final segregation distance. In addition, the decreasing large particle
velocity at higher concentrations causes semi-shocks to form, where large particles
take longer to rise to the upper layer. This creates a stronger dependence of the final
segregation distance on the inflow concentration for both homogeneous and normally
graded inflow profiles, similar to the linear relationship reported by both Staron &
Phillips (2014) and van der Vaart et al. (2015). In particular, van der Vaart et al.
(2015) were able to fit their data to a non-convex cubic flux with γ = 0.89, which
also matched their experimental observation of a peak in the large particle velocity
around φ= 0.55. It is also interesting that asymmetric segregation flux functions arise
naturally in the work of Gray & Ancey (2015), which extends the model of Gray &
Chugunov (2006) to account for differences in both particle size and particle density.
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cubic flux with γ = 0.9 (see (1.5)). The dash-dotted line shows that the chord joining φR
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R . These points are important

in the construction of the ‘lens-tail’ structure in § 2.3.

1.4. Breaking size-segregation waves
One of the strengths of the continuum theory is its ability to reveal the structure
and development of the recirculation zone that plays a vital role in the formation
of bouldery fronts (Thornton & Gray 2008; Gray & Ancey 2009; Johnson et al.
2012). The simplest recirculation structure arises in the case of steady uniform flow
(Pouliquen 1999b; Rognon et al. 2007; Forterre & Pouliquen 2008), in which the
flow thickness h is constant. The combination of the propensity of the avalanche to
form an upward coarsening size distribution through particle size segregation and the
shear profile

u= (u(z), 0, 0), (1.11)

means that a monotonically decreasing interface separating large particles above
from small particles below (figure 9a) will continually steepen as fine grains are
sheared over the top of coarse grains (figure 9b). The interface eventually breaks in
finite time (figure 9c, Gray et al. 2006), forming a recirculation zone (figure 9d) in
which the large grains lying immediately below small grains are resegregated back
towards the surface, and then swept downstream by the shear velocity (Thornton
& Gray 2008; Gray & Kokelaar 2010a,b). The similarity with classical breaking
waves formed when an air–water interface steepens and breaks (Basco 1985; Shand
2009) led Thornton & Gray (2008) to refer to the propagating recirculation zone as
a breaking size-segregation wave.

The bulk velocity field (1.11) implies that the segregation equation (1.1) reduces to

∂φ

∂t
+ ∂

∂x
(φu(z))− ∂

∂z
(SrF(φ))= 0. (1.12)

Numerical solutions to (1.12) using a simple TVD Lax–Friedrichs shock-capturing
finite volume scheme (Yee 1989; Tóth & Odstrčil 1996; LeVeque 2002) show that
the breaking size-segregation wave initially has a complex structure (figure 9d) that
oscillates back and forth in time like a spinning rugby ball (Thornton & Gray 2008).
Exact solutions for the structure have only been derived for the early stages of wave
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FIGURE 9. Numerical solutions of the segregation equation (1.12) in a steady uniform
flow with a quadratic flux (1.2) show that a monotonically decreasing interface between
large and small grains (a) continually steepens in time (t = 0.0) (b) as small particles
are sheared over the top of large particles (t = 0.5). This interface breaks in finite time
(t= 1.0) (c) and forms a recirculation zone (t= 1.5) (d), in which the large particles rise
upwards towards the surface as they are resegregated before being sheared back towards
the front. The recirculating zone has a complex ‘breaking-wave’ structure that oscillates
in time, however the oscillations exponentially decay and the structure tends towards a
steady state. (e) The steady breaking wave (Thornton & Gray 2008) for the quadratic flux
function (1.2) exists between the vertical heights Hdown=0.1 and Hup=0.9, and consists of
two expansion fans and two concentration shocks arranged in a ‘lens’-like structure. The
two expansion fans are ABCA centred at point A and CDAC centred at point C, with
individual characteristic curves shown with thin solid lines. The edge of the expansion
fans are the φ = 1 and φ = 0 characteristics, which lie along AB and CD, respectively,
and are shown with thick dashed lines. The two shocks are BC and DA, and are shown
with thick solid lines. However, this structure is unable to replicate the slow movement
of large particles upstream of the main recirculation region that was seen in figure 6.

breaking (McIntyre et al. 2007), however, the simulations show that oscillations are
transient and exponentially decay, with the structure tending towards a steady state.
Thornton & Gray (2008) generated an exact solution for the steady wave with the
quadratic flux (1.2). As shown in figure 9(e), it consists of two expansion fans and
two concentration shocks arranged in a ‘lens’-like structure. In general, the breaking
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wave forms between the two vertical heights z=Hdown and z=Hup, and propagates at
a speed uwave that is equal to the mean speed between these heights,

uwave = 1
Hup −Hdown

∫ Hup

Hdown

u(z) dz. (1.13)

Note that the recirculation zone within the moving-belt flume in § 1.1 occupies the
entire height, hence Hdown = 0 and Hup = 1. Since the velocity u(z) is monotonically
increasing, the breaking wave propagates faster than the basal velocity but slower
than both the surface velocity and the front velocity ufront (Gray & Ancey 2009).
At a height z = zR, the bulk velocity is equal to uwave. Above zR, u(z) > uwave, and
so material is swept towards the breaking wave from the left, whilst for z < zR,
u(z) < uwave and so material flows towards the breaking wave from the right. The
change in flow direction relative to the ‘lens’ at z = zR is crucial, and thus both
expansion fans are initiated at this height, centred at points A and C. The φ = 1
characteristic lies between points A and B, whilst the φ = 0 characteristic lies
between points C and D. Two concentration shocks join point B with C and point
D with A, respectively. Although the upper portion of the ‘lens’ ABCA contains
lower concentrations than the lower portion of the ‘lens’ CDAC, the positions of the
characteristics, expansion fans and shocks are rotationally invariant about the centre
of the lens. This is a direct result of the symmetry of the quadratic flux (1.2) about
φ = 0.5.

Gray & Ancey (2009) derived the structure of the steady-state recirculation zone
in a non-uniform depositing flow that was reconstructed from a travelling wave
solution to the depth-averaged avalanche equations (Savage & Hutter 1989; Pouliquen
1999a,b; Wieland, Gray & Hutter 1999; Gray, Tai & Noelle 2003). They found that
the breaking wave also consisted of two expansion fans and two shocks arranged
in a ‘lens’, but surrounding a central ‘eye’ of constant concentration. The wave is
located at a unique position behind the flow front and determines the concentration
deposited within the basal layer. The model was able to qualitatively describe the
features of their experimental two-dimensional depositing flow constrained by lateral
side walls, namely the coarse-grained flow front, the rapidly moving large particles
on the surface and the static layer of coarse grains at the base sandwiching an
intermediate layer of fine grains. The experiments, were, however, too grainy to
resolve the finer structure of the breaking wave.

In the absence of the two-dimensional side-wall restrictions, Johnson et al. (2012)
numerically solved for the structure of the recirculation zone on the centreline of
a three-dimensional front, which has a more elaborate ‘breaking-wave structure’.
Numerical solutions suggest that both the characteristic curves and the particle paths
continually spiral inwards, because of the sidewards advection of mass into the lateral
levees. The exact analytic structure of the three-dimensional recirculation zone is still
proving illusive.

Figure 6(e) shows a breaking-wave structure using the simple asymmetric cubic
model (1.5) from § 1.3. As with the structure of the symmetric flux in figure 9,
the asymmetric wave also has a ‘lens’-like structure towards the downstream end.
The asymmetry also causes a new upstream ‘tail’ to be produced, through which a
few large particles recirculate slowly. Although this behaviour is very similar to the
individual particle motion observed in experiments and simulations in § 1.1, the shape
and structure of the ‘tail’ region are qualitatively different. There are a number of
other factors present within the moving-bed flume set-up used in both the experiments
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and simulations that are unaccounted for by the simple theory. Streamwise spatial
variations in the velocity field, diffusive remixing and the differential friction of the
two particles on the moving base may all have an influence on the ‘tail’ shape. The
size of the system and finite-size effects may also contribute to the discrepancy in
the ‘tail’ structure. Further experimental work and extensive simulations are currently
being conducted in order to understand more about the slow particle movement
through the ‘tail’. Nevertheless, without any knowledge of the exact shape of the
segregation flux function in this environment (Gajjar & Gray 2014), the fact that
a simple asymmetric cubic flux produces a ‘tail’ means that it is of interest to
understand the derivation and particle paths. This paper examines the effect of an
asymmetric segregation flux function (Gajjar & Gray 2014; van der Vaart et al. 2015)
on both the structure of a two-dimensional breaking size-segregation wave, and the
particle recirculation within it.

2. Steady-state structure of the travelling breaking wave
The simplest steady-state breaking wave occurs under steady uniform flow (§ 1.4),

and exists between the vertical heights z = Hdown and z = Hup. The wave propagates
forwards with velocity uwave, and it is convenient to transfer to a (Lagrangian)
reference frame translating with the recirculation zone by employing the change of
variables

t̂= Sr

Hup −Hdown
t, x̂= Sr

Hup −Hdown
(x− uwave t), ẑ= z−Hdown

Hup −Hdown
. (2.1a−c)

At steady state, the wave is stationary in this frame. The wave has also conveniently
been stretched to lie between ẑ = 0 and ẑ = 1, whilst the Sr parameter dependence
has been removed. The segregation equation (1.12) becomes a simple quasi-linear
equation

û
∂φ

∂ x̂
− ∂

∂ ẑ
F(φ)= 0, (2.2)

where the relative velocity û= u− uwave. Equations (1.11) and (2.1) also simplify the
shock condition (1.7) to give

û
∂ ẑs

∂ x̂
=−JF(φ)K

JφK . (2.3)

Equation (2.2) may be solved using the method of characteristics (e.g. Whitham 1974).
The analysis is simplified by mapping to velocity-integrated coordinates (ξ , ψ)

ξ = x̂, ψ(ẑ)=
∫ ẑ

0
û(ẑ′) dẑ′. (2.4a,b)

Under this transformation, (2.2) becomes

∂φ

∂ξ
− ∂

∂ψ
F(φ)= 0, (2.5)

with the concentration φ taking the constant value φλ on straight line characteristics
of gradient

∂ψ

∂ξ
=−F′(φλ)=−Aγ

(
3γφ2

λ − 2(1+ γ )φλ + 1
)
. (2.6)
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The shock condition (2.3) also reduces to

dψ
dξ
=−JF(φ)K

JφK . (2.7)

Transformation (2.4) splits the domain into two sections, which are separated by
the no-mean-flow line ẑ= ẑR. In the lower domain, ψ decreases from ψ = 0 at z= 0
to ψ = ψR < 0 at ẑ= ẑR, with both the bulk flow and time-like direction to the left,
whilst in the upper domain ψ increases from ψ =ψR at ẑ= ẑR to ψ = 0 at ẑ= 1, with
the bulk flow and time-like direction to the right. The characteristics in each domain
can be calculated independently, with the concentrations matched across ẑ= ẑR.

For the cubic flux (1.5), the characteristics form three distinct breaking-wave
structures for different values of asymmetry parameter γ , as shown in figure 10.
A ‘lens’-like structure (figure 10a) that is very similar to that of Thornton & Gray
(2008) is formed for convex flux functions with low amounts of asymmetry (γ 6 0.5).
The only differences between the two structures are that the top of the convex ‘lens’
is shifted to the right because of large particles rising at a slower rate than the
percolating fines, and that the structures are no longer rotationally invariant. The
symmetric structure of Thornton & Gray (2008) is, however, recovered in the limit
γ → 0. The new ‘lens’ structure derivation presented here is implicit in terms of the
small particle concentration φ, and so is valid for not only the quadratic (1.2) and
cubic fluxes (1.5), but also other convex asymmetric flux functions such as those of
Marks, Rognon & Einav (2012) and Tunuguntla et al. (2014). A second ‘lens’-like
structure (figure 10b) is formed for non-convex flux functions with low amounts of
asymmetry (0.5 < γ 6 Γ where Γ = (5 + √5)/10). The top of the ‘lens’ is shifted
further to the right as compared to the convex lens, and an additional semi-shock is
found in the upper region. A new ‘lens-tail’ structure (figure 10c) arises for larger
amounts of asymmetry (Γ <γ 6 1). There is a large difference between the speeds of
large and small particles, and additionally collective motion is observed, where large
particles preferentially rise together in a group (van der Vaart et al. 2015). These
combine to produce an additional ‘tail’-like region to the left of the ‘lens’ where a
few large particles rise very slowly and are swept a long way downstream. Each of
these structures is examined in more detail below.

2.1. Convex ‘lens’ structure
First consider the ‘lens’ structure of the convex flux when γ 6 0.5. The ‘lens’ is
formed from two shocks BC and DA and two expansion fans ABCA and CDAC, as
shown in figure 10(a) for γ = 0.35. The front of the breaking wave is positioned at ξC,
and as F′(φmax)= 0, the φ = φmax characteristic is horizontal along the no-mean-flow
line ẑ= ẑR. Concentration φmax will thus be known as φR throughout the remainder of
this paper. Note that the definition of the asymmetric flux function in § 1.3 implies
that

F(φR)= 1/4. (2.8)

Within the lower domain ẑ < ẑR, rarefaction fan CDAC is centred at point C with
concentrations in the range [0, φR]. From (2.6), each characteristic of the rarefaction
fan is given by

ψ =ψR − F′(φ)(ξ − ξC). (2.9)



Asymmetric breaking size-segregation waves 479

(a)

(b)

(c)

A

B

C

D

0

0

0

0

0

0

1

0

1

0

1

0

A

B

C

D

A

B
G

C

D

F

E

FIGURE 10. Schematic diagrams of the exact solutions to illustrate the breaking-wave structures.
The characteristic curves are shown in transformed coordinates (ξ , ψ), with transformation (2.4)
splitting the domain into two regions separated by the no-mean-flow line ẑ= ẑR, ψ = ψR. In the
lower region (ẑ< ẑR), the bulk flow and the time-like direction are both to the left, whilst in the upper
region (ẑ> ẑR), they are both to the right. Three different breaking-wave structures are formed for
different values of the asymmetry parameter γ . A ‘lens’-like structure is formed for both convex flux
functions, 0< γ 6 0.5, and non-convex flux functions with 0.5< γ 6 Γ , as shown for γ = 0.35 and
γ = 0.65 in (a) and (b), respectively. The difference between the two is that the outer characteristic
of the rarefaction fan AB becomes a semi-shock with non-convex flux functions in (b). A ‘lens-tail’
structure is formed for higher values of asymmetry, Γ < γ 6 1, as shown for γ = 0.9 in (c). The
characteristics of the pure phases of large and small particles are shown with thin dashed straight
lines, whilst the characteristics within the breaking wave are shown with thin solid straight lines.
Thick solid lines indicate shocks, thick dash-dot lines represent a semi-shock whilst thick dashed
straight lines mark the edge of an expansion fan or compression wave. None of the above structures
with γ > 0 have rotational symmetry about the centre of the lens. Contoured plots of these solutions
are shown in figure 12, in physical (x, z) coordinates.
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The φ = 0 characteristic CD separates the breaking wave from the region of large
particles downstream, and reaches the bottom of the wave at point D, where ψ = 0
and ξ = ξD

ξD = ξC + ψR

F′(0)
. (2.10)

A sharp concentration shock DA separates the breaking wave (φ− = φ) from the
upstream region of small particles (φ+ = 1), with gradient given by (2.7)

dψ
dξ
= F(φ)

1− φ . (2.11)

Following Gajjar & Gray (2014), a differential equation governing the downstream
position of shock DA may be derived in terms of the small particle concentration φ.
Using the chain rule, the shock gradient (2.11) may be written as

dψ
dφ
= F(φ)

1− φ
dξ
dφ
. (2.12)

The rarefaction characteristics (2.9) which govern the concentration on the lower side
of the shock (φ− = φ) may be differentiated with respect to φ to give

dψ
dφ
=−F′′(φ)(ξ − ξC)− F′(φ)

d
dφ
(ξ − ξC). (2.13)

Equating (2.12) and (2.13) yields an ordinary differential equation (ODE) for the
shock path DA, which may be written as

d
dφ

[(
F(φ)+ (1− φ)F′(φ)) (ξ − ξC)

]
= 0. (2.14)

The above sequence of steps to combine (2.9) and (2.11) into (2.14) is important and
will be used throughout this paper to derive equations for shocks and particle paths.
Shock DA starts from point D where φ = 0, and so (2.14) can be integrated to give
the implicit position of the shock as

ξ = ξC + ψR

F(φ)+ (1− φ)F′(φ), (2.15)

where the concentration φ ∈ [0, φR] in the rarefaction fan is used to parametrise the
shock path, and the height ψ = ψ(φ, ξ) is given by (2.9). When φ = φR, shock DA
meets the no-mean-velocity line ẑ= ẑR at point A, where ψ =ψR and ξ = ξA

ξA = ξC + ψR

F(φR)
. (2.16)

There is also a rarefaction fan ABCA centred at point A in the upper domain (ẑ> ẑR),
with characteristics

ψ =ψR − F′(φ)(ξ − ξA), (2.17)
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for φ ∈ [φR, 1]. The φ = 1 characteristic AB separates the left-hand edge of the
breaking wave from the small particle region upstream and reaches the top at point
B, where ψ = 0 and

ξ = ξB = ξA + ψR

F′(1)
. (2.18)

Shock BC exists between points B and C, and separates the rarefaction fan
characteristics within the breaking wave (φ− = φ) from the pure large particle
phase downstream (φ+= 0). Combining (2.7) and (2.17) in the same manner as (2.9)
and (2.11) above yields the governing differential equation for the streamwise shock
position

d
dφ

[(
F(φ)− φF′(φ)

)
(ξ − ξA)

]
= 0, (2.19)

which may be integrated with the initial condition that the shock starts from point B
(where ψ = 0 and φ = 1) to give the implicit downstream position of the shock as

ξ = ξA − ψR

F(φ)− φF′(φ)
. (2.20)

This is valid for concentrations in the range φ ∈ [φR, 1], with the height of the shock
given by (2.17). Shock BC propagates downwards until φ = φR, where it meets the
no-mean-flow line ẑ= ẑR at point C with downstream coordinate

ξC = ξA − ψR

F(φR)
. (2.21)

This is consistent with (2.16), closing the structure of the breaking wave.
As the asymmetric flux functions are normalised through (2.8) so that their

maximum value is the same as that of the quadratic flux, (2.16) and (2.21) imply
that the ‘lens’ has a constant length of −4ψR, which is identical to Thornton & Gray
(2008). However, the result of the asymmetry is that both points B and D are shifted
to the right as compared to the quadratic flux. This means that the characteristics in
the upper and lower portions of the ‘lens’ are no longer rotationally invariant about
the centre of the lens.

2.2. Non-convex ‘lens’ structure
The ‘lens’ structure for asymmetric flux functions with small amounts of non-
convexity, 0.5<γ 6Γ , is similar to the convex ‘lens’ structure of § 2.1. However, as
explained in § 1.3, the non-convexity causes the large particles to display collective
motion, with the maximum large particle velocity occurring at concentration φM.
This causes a slight difference in the upper domain, and an example of the structure
is shown in figure 10(b) for γ = 0.65. The characteristics of the rarefaction fan
ABCA still satisfy (2.17), but for φ ∈ [φR, φM]. A semi-shock AB now separates
the rarefaction fan from the small particle region upstream, and is equivalent to the
φ = φM characteristic. Point B thus has downstream position

ξB = ξA + ψR

F′(φM)
, (2.22)

which is shifted even further to the right. Shock BC still satisfies (2.20), but with
concentrations in the range φ ∈ [φR, φM]. The remainder of the structure is the same
as § 2.1 and the length of the ‘lens’ remains unaffected.
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2.3. ‘Lens-tail’ structure
For larger amounts of asymmetry, Γ < γ 6 1, the greater difference between the
maximum speeds of large and small particles and the collective motion of coarse
grains combine to produce a new ‘lens-tail’ structure, shown in figure 10(c) for
γ = 0.9. The structure shares some similarities with the structure for normally graded
inflow with an asymmetric flux derived by Gajjar & Gray (2014). A rarefaction
fan CDEAC occurs in the lower domain, with characteristics given by (2.9) for
φ ∈ [0, φR]. However, the upstream region of small particles (φ+ = 1) is separated
from the rarefaction fan (φ−=φ) by a shock DE, together with a semi-shock EA that
lies adjacent to a non-centred expansion fan EFAE. This non-centred expansion fan
forms the lower portion of the ‘tail’. Shock DE satisfies (2.15), but with φ ∈ [0, φE]
where φE is defined in (1.10b). Point E has coordinates (ξE, ψE) given by (2.15) with
φ = φE

ξE = ξC + ψR

F(φE)+ (1− φE)F′(φE)
= ξC + ψRγ

2

Aγ (2γ − 1)3
, (2.23a)

ψE =ψR − F′(φE)(ξE − ξC)=ψR
(1− γ )2(3γ − 1)

(2γ − 1)3
. (2.23b)

Semi-shock EA separates each rarefaction characteristic φ− = φ in CDEFC from its
image point concentration characteristic φ+=φo in EAFE. Using the definition of the
image point concentration φo (1.9), the shock gradient (2.7) and the equation of the
rarefaction characteristics (2.9) can be manipulated in a similar manner to (2.9) and
(2.11) to give a first-order differential equation for the semi-shock path

1
ξ − ξC

dξ
dφ
= F′′(φ)

F′(φo)− F′(φ)
=− 8γ

3γφ − (1+ γ ) . (2.24)

For the cubic flux, this equation is separable and can be integrated exactly given that
the semi-shock starts from point E

ξEA = ξC + ψRγ
2

Aγ

(
256

(
2γ − 1

)(
3γφ − (1+ γ ))8

)1/3

, (2.25a)

ψEA = ψR − F′(φ)(ξEA(φ)− ξC), (2.25b)

with concentration φ ∈ [φE, φR]. Point A lies at the end of the semi-shock (2.25) on
the no-mean-flow line ẑ= ẑR with φ = φR, and thus has downstream coordinate

ξA = ξC + ψRγ
2

Aγ

(
256

(2γ − 1)(γ 2 − γ + 1)4

)1/3

. (2.26)

Each of the image point concentration φo characteristics on the forward side (upstream
side as the time-like direction is to the left) of the semi-shock EA lies locally
tangential and forms a non-centred expansion fan in EAFE. Each characteristic has
equation

ψ −ψEA(φ)=−F′(φo)
(
ξ − ξEA(φ)

)
, (2.27)
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G

FIGURE 11. A sketch of the upper part of the ‘lens-tail’ structure, where compression
wave FAGF interacts with the rarefaction fan centred at A to form shock AG. The
concentration change along either side of the shock is governed by (2.32), whilst the
shock position is given by (2.31). Note that the diagram is not to scale and that FG is
not tangential at G.

upon which the concentration has a constant value of φo with φ ∈ [φE, φR]. The
characteristics each meet the no-mean-flow line at ξFA(φ), which is given by equating
(2.25) and (2.27) with ψ =ψR

ξFA = ξC − ψRγ

F′(φo)

(
4

(
2γ − 1

)(
3γφ − (1+ γ ))2

)1/3

, φ ∈ [φE, φR]. (2.28)

Point F is the furthest upstream part of the breaking wave and is given by the φo
E

characteristic that is tangential at point E,

ξF = ξC + ψRγ

Aγ (2γ − 1)(1− γ ) . (2.29)

The solution in the upper domain (ẑ> ẑR) matches the lower domain (ẑ< ẑR) along
the no-mean-flow line ψ = ψR. As F′(φR)= 0, the φR characteristic lies horizontally
between points C and A and gives concentration φ = φR, whilst (2.28) governs the
concentration between A and F. A characteristic of concentration φo emanates into
the upper region from each point between F and A

ψ =ψR − F′(φo)
(
ξ − ξFA(φ)

)
, (2.30)

with φ ∈ [φE, φR] implying that φo
R 6 φo 6 1. The φo

R characteristic originates from
A, whilst the φ = 1 characteristic originates from F. All the characteristics form a
compression wave FGAF (Whitham 1974; Rhee et al. 1986); each characteristic has a
steeper gradient than the characteristic immediately to its left, as shown in figure 11.
This is the upper portion of the ‘tail’ region. The ‘lens’ region is formed from an
expansion fan AGBCA centred at A whose characteristics are given by (2.17) with
φR 6 φ 6 φoo

R . These rarefaction characteristics collide with the compression wave
characteristics (2.30) to form a shock AG. A full derivation of the governing equations
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for the shock is provided in appendix B. The shock coordinates are given implicitly
given by

ξAG(φleft, φright) = F′(φleft)ξ̃FA(φleft)− F′(φright)ξF

F′(φleft)− F′(φright)
, (2.31a)

ψAG(φleft, φright) = ψR − F′(φleft)F′(φright)

F′(φleft)− F′(φright)

(
ξ̃FA(φleft)− ξF

)
, (2.31b)

where ξFA(φ)= ξ̃FA(φ
o), and concentrations φleft and φright on the left (upstream) and

right (downstream) sides of the shock are related by

dφright

dφleft
= F(φleft)− F(φright)− (φleft − φright)F′(φright)

F(φleft)− F(φright)− (φleft − φright)F′(φleft)

×
[

F′(φright)F′′(φleft)

F′(φleft)F′′(φright)
− F′(φleft)− F′(φright)

F′′(φright)

ξ̃ ′FA(φleft)

ξ̃FA(φleft)− ξF

]
. (2.32)

The shock entropy condition (Oleinik 1959; Rhee et al. 1986; Gajjar & Gray 2014)
requires that AG must initially start tangential to the rarefaction fan, and as φleft = φo

R
at point A, (1.9) implies that φright= (φo

R)
o=φoo

R at this point. The relationship between
φR, φo

R and φoo
R is illustrated in figure 8. Equation (2.32) may be numerically integrated

from φleft = φo
R to φleft = 1 to give φright = φG at point G and the coordinates (ξG, ψG)

of point G are given by (2.31). Shock GB separates the upstream region of pure small
particles (φ− = 1) from the rarefaction fan in the ‘lens’ region (φ+ = φ). Combining
(2.7) and (2.17) using the chain rule shows that GB satisfies

d
dφ

[(
F(φ)+ (1− φ)F′(φ)) (ξ − ξA)

]
= 0. (2.33)

The shock starts from point G, and hence (2.33) can be integrated to give

ξGB = ξA + F(φG)+ (1− φG)F′(φG)

F(φ)+ (1− φ)F′(φ) (ξG − ξA) , (2.34a)

ψGB = ψR − F′(φ)
(
ξGB(φ)− ξA

)
, (2.34b)

with φ ∈ [φB, φG]. A final shock BC satisfying (2.19) separates the downstream region
of large particles (φ+= 0) from the rarefaction fan (φ−=φ). Shock BC must meet the
no-mean-flow line at C, where φ= φR, and since ξC− ξA is given by (2.26), equation
(2.19) can be integrated to give

ξBC = ξA − G

F(φ)− φF′(φ)
= ξA − G

Aγφ2(1+ γ − 2γφ)
, (2.35a)

ψBC = ψR − F′(φ)G
F(φ)− φF′(φ)

, (2.35b)
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with φ ∈ [φR, φB] and

G = (ξC − ξA)F(φR)= ξC − ξA

4
= ψRγ

2

Aγ

(
4

(2γ − 1)(γ 2 − γ + 1)4

)1/3

. (2.36)

The shock reaches the top of the ‘lens’ at point B where ψ = 0, and hence (2.35)
determines both φB and ξB.

A requirement for the ‘lens-tail’ solution to form is that point E must reside in
the lower domain, which occurs when φE < φR. Instead, if φE > φR, then point E
would lie in the upper domain and shock DE would continue up to the no-mean-flow
line, forming the non-convex ‘lens’ structure of § 2.2. The transition between the ‘lens’
solution and the ‘lens-tail’ solution thus occurs when point E lies on the no-mean-flow
line ψ =ψR, i.e. when φR = φE. The definition F′(φR)= 0 implies that for the cubic
flux (1.5)

φR = 1+ γ ±√γ 2 − γ + 1
3γ

, (2.37)

and equating this with φE (1.10b) gives the quadratic equation

5γ 2 − 5γ + 1= 0. (2.38)

As the cubic flux (1.5) is non-convex when γ > 0.5, the transition between the non-
convex ‘lens’ and ‘lens-tail’ solutions takes place at the larger of the two roots of
(2.38), namely

γ = Γ = (5+√5)/10. (2.39)

2.4. Solution in physical coordinates
Following Thornton & Gray (2008), transformations (2.1) and (2.4) from (x, z) to
(ξ , ψ) coordinates mean that the steady-state structures shown in figure 10 describe
all of the breaking size-segregation waves that develop under steady uniform flow.
They are valid for waves that exist between all vertical heights Hdown and Hup, for any
constant segregation number Sr and for any monotonically increasing velocity profile
u(z). For example, consider the simple linear velocity profile,

u= α + 2(1− α)z, 0 6 α < 1, (2.40)

where α is the parameter that controls the amount of shear across the layer. The case
of α = 0 represents simple shear with zero basal velocity, whilst α = 1 corresponds
to plug flow. Not only is this the simplest non-trivial velocity field that highlights all
the major features of the breaking-wave structure, but it is also a good leading-order
approximation to the velocity field measured in the (shallow) moving-bed flume
experiments of § 1.1. From (1.13), the breaking wave travels downstream with
velocity

uwave = α + (1− α)(Hup +Hdown), (2.41)

and so the relative downstream velocity û becomes

û= (1− α)(Hup −Hdown)(2ẑ− 1). (2.42)
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The no-mean-flow line ẑR = 1/2 lies halfway between the vertical heights Hdown and
Hup in untransformed variables. Transformation (2.4) means that z and ψ have a
quadratic relation,

ψ = (1− α)(Hup −Hdown)(ẑ2 − ẑ), (2.43)

with the transformed no-mean-flow line ψR = −(1 − α)(Hup − Hdown)/4. Inverting
equation (2.43) gives ẑ as a function of ψ , with the positive and negative roots for
the upper and lower regions, respectively. Figure 12 shows the steady breaking waves
in physical coordinates for linear shear with α= 0.5, Sr= 1, Hup= 0.9 and Hdown= 0.1
for γ = 0.35, 0.65 and 0.9 in (a), (b) and (c) respectively.

2.5. Comparison with solution for the quadratic flux
The asymmetric cubic flux function (1.5) leads to a number of differences in the
structures shown in figure 12 and that of the quadratic flux function (1.2) shown in
figure 9(e). The two ‘lens’-like structures in figure 12(a,b) have a strong similarity to
the symmetric ‘lens’ structure. As the normalisation of the flux function (2.8) implies
that (2.21) is independent of γ , the ‘lens’ length is identical to the quadratic ‘lens’
length (1 − α)(Hup − Hdown)

2/Sr. However, with an asymmetric flux, the ‘lens’
structures have no rotational symmetry. The asymmetry also means the maximum
rise velocity of large particles is less than the maximum percolation velocity of
fines, causing point B to lie further downstream. When Γ < γ 6 1, a few large
particles surrounded by many fines rise very slowly, and so are swept a long way
downstream before recirculating. This causes the additional ‘tail’-like region, and
substantially increases the length of the breaking wave. The colour map shows how
the concentration in the ‘tail’ is very similar to φ = 1 of the surrounding region of
pure small particles, reflecting the very small number of large particles that circulate
slowly through this region. Most of the large particles still rise at a moderate speed
through the ‘lens’ region; however, the small particles percolate down very quickly.
This leaves a higher concentration of coarse grains in the middle of the ‘lens’, shown
by a stronger green hue. Interestingly, the length of this ‘lens’ region in the ‘lens-tail’
structure remains very close to the length of the ‘lens’ structures. Comparing (2.26)
with (2.16) shows that the length of the ‘lens’ within the ‘lens-tail’ structure is, at
most, only 9 % less than the length of the ‘lens’ structure.

3. Recirculating particle motion through the breaking wave
The recirculating motion of the grains can be understood by examining the particle

paths as they pass through the breaking wave. Following Thornton et al. (2006) and
Thornton & Gray (2008), the particle paths of the large (superscript l) and small grains
(superscript s) are given by

dxν

dt
= uν,

dzν

dt
=wν, (ν = l, s). (3.1a,b)

The normal constituent velocities wν are given by (1.3) and the downstream
constituent velocities are assumed to be equal to the downstream bulk velocity
(1.11), us = ul = u. Eliminating the time dependence from (3.1) and employing the
non-dimensionalisation (2.1) gives the non-dimensional particle paths

û(ẑ)
dẑν

dx̂ν
= ŵν(φ), (ν = l, s), (3.2)
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FIGURE 12. The breaking wave that develops between Hup = 0.9 and Hdown = 0.1 is shown in
physical coordinates (x, z) in a frame translating with velocity uwave (1.13). The bulk velocity u(z)
follows a linear shear profile (2.40) with α = 0.5. The three different structures that arise for the
asymmetric cubic flux (1.5) with Sr = 1 are shown in (a–c) for γ = 0.35, 0.65 and 0.9, respectively.
The asymmetry in the large and small particle velocities that result from the asymmetric flux function
causes point B to be swept further downstream in the two ‘lens’-like structures (a) and (b) compared
to the symmetric quadratic flux shown in figure 9(e). These asymmetric velocities are even more
significant in (c), where the slow rise rate of large particles surrounded by many fines means that
some large particles are swept a long way upstream before recirculating. This results in the ‘tail’
region EFGAE. The concentration map reflects how only a small number of large particles recirculate
through this region. Most large particles still rise at a moderate velocity, and recirculate in the ‘lens’
region.
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which simplify further in velocity-averaged coordinates (2.4) to give

dψ l

dξ l
= F(φ)

1− φ ,
dψ s

dξ s
=−F(φ)

φ
. (3.3a,b)

The concentration fields derived in § 2 can be used with (3.3) to calculate the particle
paths through each of the breaking-wave structures.

3.1. Recirculation through the ‘lens’ structures
First consider the recirculation through a breaking wave with a convex ‘lens’ structure
when γ 6 0.5. Suppose a small particle starts at a height ẑs

enter > ẑR, equivalent to
transformed height ψ s

enter. The small grains are moving faster than the breaking wave
in the upper region, and so they are swept downstream to the right before crossing
AB and entering the ‘lens’ at downstream distance

ξ s
enter = ξA + ψ

s
enter −ψR

F′(1)
. (3.4)

Although the local small particle velocity is given by (3.3b), the local concentration
changes through the rarefaction fan ABCA according to characteristics (2.17). These
characteristics may be differentiated with respect to φ as in (2.13), whilst the chain
rule may be used to write the small particle velocity (3.3b) in a similar manner to
(2.12). Combining these equations shows that the small particle motion through the
upper part of the ‘lens’ is governed by ODE (2.19), with ξ s instead of ξ . As the
small particle enters the ‘lens’ at ξ s

enter (3.4) when φ = 1, the motion through ABCA
is given by

ξ s = ξA + ψ s
enter −ψR

F(φ)− φF′(φ)
, (3.5)

with φ ∈ [φR, 1]. The small particle continues along this path until it crosses the no-
mean-flow line AC at

ξ s
AC = ξA + ψ

s
enter −ψR

F(φR)
= ξA + 4(ψ s

enter −ψR), (3.6)

with the last equation a result of the normalisation (2.8). The motion through the lower
region CDAC is similarly governed by velocity (3.3b) and characteristics (2.9), which
combine to give the differential equation

d
dφ

[(
F(φ)− φF′(φ)

)
(ξ s − ξC)

]
= 0. (3.7)

Since the small particle crosses the no-mean-flow line at ξ s = ξ s
AC when φ = φR,

equations (2.21), (3.6) and (3.7) imply that the motion through the lower region
CDAC is given by

ξ s = ξC + ψ s
enter

F(φ)− φF′(φ)
, (3.8)

with φ ∈ [φs
DA, φR]. The small particle exits the breaking wave across DA, with

equations (2.9), (2.15) and (3.8) giving both the concentration φs
DA and the exit

height ψ s
DA.
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Similarly, consider a large particle that starts in the lower region at a height
ẑl = ẑl

enter < ẑR, corresponding to ψ l = ψ l
enter. The large particles initially move slower

than the breaking wave, and so are swept upstream to the left until they meet CD at
distance

ξ l
enter = ξC + ψR −ψ l

enter

F′(0)
. (3.9)

The concentration within the lower part of the ‘lens’ CDAC is governed by
characteristics (2.9) whilst the local velocity is given by (3.3a); these combine
to give differential equation (2.14) with ξ l replacing ξ . With the initial condition
φ = 0 at ξ l = ξ l

enter, the large particle path through CDAC is given by

ξ l = ξC + ψR −ψ l
enter

F(φ)+ (1− φ)F′(φ) . (3.10)

Each large particle crosses the no-mean-flow line AC at distance

ξ l
AC = ξC + ψR −ψ l

enter

F(φR)
= ξC + 4(ψR −ψ l

enter). (3.11)

In the upper part of the ‘lens’, characteristics (2.17) govern the concentration at
a point (ξ , ψ), and can be combined with (3.3a) to give a governing differential
equation that resembles (2.14)

d
dφ

[(
F(φ)+ (1− φ)F′(φ)) (ξ l − ξA)

]
= 0. (3.12)

The initial condition that φ = φR at ξ l = ξ l
AC, along with (2.21) and (3.11) give the

large particle path through ABCA as

ξ l = ξA − ψ l
enter

F(φ)+ (1− φ)F′(φ), (3.13)

where φ ∈ [φR, φ
l
BC]. The large particle exits the breaking wave by crossing shock

BC when φ = φl
BC and ξ l = ξ l

BC. These are found by equating (2.20) and (3.13), with
the exit height ψ l = ψ l

BC given by (2.17). After exiting the breaking wave, the large
particles continue to move downstream at a constant height ψ l

BC.
The particle paths through the non-convex ‘lens’ structure that forms for 0.5<γ 6

Γ are identical to the above, except that the small particles enter the breaking wave
by crossing semi-shock AC (2.17) when φ = φM (1.10a). Thus, the distance ξ s

enter at
which they first enter the ‘lens’ is given by

ξ s
enter = ξA − ψ

s
enter −ψR

F′(φM)
, (3.14)

whilst equation (3.5) governing the motion of the small particles through the upper
region is valid for φ ∈ [φR, φM].

The small particle paths are parameterised by ψ s
enter, and are given implicitly by

(3.4) or (3.14) (for γ 6 0.5 and 0.5<γ 6Γ respectively), (3.5), (3.6) and (3.8), whilst
the large particle paths are parameterised by ψ l

enter and are given by (3.9)–(3.13). The
paths can be transformed back from velocity averaged (ξ , ψ) variables to physical
(x, z) variables using the results of § 2.4, and are shown in figure 13(a,b) for γ = 0.35
and γ = 0.65, respectively.
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FIGURE 13. The particle paths within the breaking wave are shown superimposed on
top of the concentration field for each of the cases in figure 12. The large particles
are shown using a solid line with a black arrow, whilst the small particles are shown
using a dashed line with a red arrow. The dash-dot line with white arrows shows the
upstream and downstream shocks where large particles propagate along the upper side
and small particles propagate along the lower side. The boundary of the breaking wave,
where particles recirculate between the vertical heights Hup and Hdown, is defined by the
highest small particle path and lowest large particle path.
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FIGURE 14. A sketch showing how the small particles may pass through different parts
of the ‘lens-tail’ structure depending on their initial starting height (not to scale). There
are two critical heights Ψ s

A∗ and Ψ s
E∗, corresponding to physical heights Zs

A∗ = z(Ψ s
A∗) and

Zs
E∗ = z(Ψ s

E∗), which define small particle paths that pass through points A and E,
respectively. These paths, along with the path passing through point G, are shown with
thin solid lines and white arrows. The small particles starting at an initial height Ψ s

E∗ 6
ψ s

enter < 0 (physical height Zs
E∗ 6 zs

enter < Hup) just pass through the ‘lens’, whilst those
starting at an initial height ψG 6 ψ s

enter < Ψ s
E∗ (physical height zG 6 zs

enter < Zs
E∗) pass

through the ‘lens’ and the lower portion of the ‘tail’. Small grains starting at Ψ s
A∗ 6

ψ s
enter <ψG (physical height Zs

A∗ 6 zs
enter < zG) pass through the upper portion of the ‘tail’,

the ‘lens’ and the lower portion of the ‘tail’. Finally, small grains starting closest to the
no-mean-flow line ψR <ψ

s
enter <Ψ

s
A∗ (at physical heights zR < zs

enter < Zs
A∗) only recirculate

through the ‘tail’ region. The ‘lens’ and ’tail’ regions are shown with solid colour and
cross-shading, respectively, whilst sample particle paths starting at each of these heights
are shown using thin dashed lines with black arrows. The thick solid lines mark the
boundaries of the breaking wave.

3.2. Recirculation through the ‘lens-tail’ structure
Just like the recirculation within the ‘lens’ structure, the small particle (superscript s)
motion is parameterised by ψ s

enter. As summarised in figure 14, the initial starting
height ψ s

enter determines whether the small grains may pass through only the ‘lens’,
both the ‘lens’ and ‘tail’ regions, or just through the ‘tail’. The small particles
starting at a height Ψ s

E∗ 6 ψ s
enter < 0 would cross shock GB at downstream distance

ξ s
GB, recirculate through the ‘lens’ and exit the breaking wave across DE. Solving
ψGB=ψ s

enter in (2.34) gives the position ξ s
GB at which the particle enters the breaking

wave, and the concentration φs
GB on the downstream side of shock GB at this point.

The motion through the upper portion of the ‘lens’ AGBCA is governed by (2.19),
with ξ s replacing ξ . This can be integrated subject to ξ s = ξ s

GB at φ = φs
GB to give

ξ s = ξA + F(φs
GB)− φs

GBF′(φs
GB)

F(φ)− φF′(φ)
(ξ s

GB − ξA), (3.15)



492 P. Gajjar and others

where φ ∈ [φR, φ
s
GB] and height ψ s is given by (2.17). The particles cross the no-mean-

flow line AC at a distance ξ s
AC, given by φ = φR in (3.15). This provides the initial

condition for (3.7), governing the motion through the lower part of the ‘lens’ CDEFC,
which integrates to give

ξ s = ξC +
1
4(ξ

s
AC − ξC)

F(φ)− φF′(φ)
, (3.16)

with the concentration φ in the range φ ∈ [φs
DE, φR]. The particles exit the breaking

wave across shock DE at downstream distance ξ s
DE, which is found by equating (3.16)

with (2.15). This also gives the concentration φs
DE, with the exit height ψ s

DE given
by (2.9).

As shown in figure 14, there is a critical initial height Ψ s
E∗ from which a small

particle passes through point E. It is calculated by equating ξ s = ξE in (3.16) and
substituting back into (3.15) and (2.17). Small grains starting below Ψ s

E∗ at an initial
height ψG 6ψ s

enter<Ψ
s

E∗ enter the ‘lens’ across GB, travel through the ‘lens’ according
to (2.19) and (3.16), before passing through the lower part of the ‘tail’ and exiting the
breaking wave across EF. The small particle crosses from the ‘lens’ to the ‘tail’ at
(ξ s

EA, ψ
s
EA) when φ = φs

EA, which are given by equating (3.16) with (2.25). The lower
portion of the ‘tail’ EAFE is spanned by characteristics (2.27) of concentration φo;
following Gajjar & Gray (2014), these may be implicitly differentiated with respect
to φo

dψ
dφo
− dψEA

dφo
=−F′′(φo)ξ − F′(φo)

dξ
dφo
+ d

dφo

(
F′(φo)ξEA(φ)

)
, (3.17)

and combined with (3.3b) using the chain rule to give the inhomogeneous first-order
differential equation

d
dφo

((
F(φo)− φoF′(φo)

)
ξ s
)
=−φo d

dφo

(
ψEA + F′(φo)ξEA(φ)

)
. (3.18)

Integrating by parts with the initial condition φ = φs
EA at ξ s = ξ s

EA gives

ξ s = ξC + g1(φ
s
EA)(ξ

s
EA − ξC)+ g2(φ)− g2(φ

s
EA)

g1(φ)
, (3.19a)

ψ s = ψEA(φ)− F′(φo)(ξ s(φ)− ξEA(φ)), (3.19b)

where φ ∈ [φE, φ
s
EA] and the functions g1(u), g2(u) are defined as

g1(u) = Aγ
4γ

u(1+ γ − γ u)2, (3.20a)

g2(u) = ψRγ

(
4

2γ − 1

)1/3

u
(
3γ u− (1+ γ ))−2/3

. (3.20b)

The final height ψ s
exit = ψ s

EF at which these small particles exit the breaking wave is
given by φ = φE in (3.19).

Small particles starting below ψG will first enter the breaking wave across FG at a
distance

ξ s
FG = ξF + ψR −ψ s

enter

F′(1)
, (3.21)
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and travel through the upper portion of the ‘tail’ FGAF where the concentration is
given by characteristics (2.30). In a similar fashion to (3.17) above, these can be
combined with (3.3b) to give the inhomogeneous differential equation

d
dφo

((
F(φo)− φoF′(φo)

)
ξ s
)
=−φo d

dφo

(
F′(φo)ξFA(φ)

)
. (3.22)

This is closely related to (3.18), and integrating by parts with the initial condition
ξ s = ξ s

FG at φ = φE gives an almost identical form to (3.19a) for the ξ coordinate

ξ s = ξC + g1(φE)(ξ
s
FG − ξC)+ g2(φ)− g2(φE)

g1(φ)
, (3.23a)

ψ s = ψR − F′(φo)(ξ s(φ)− ξFA(φ)). (3.23b)

Whether or not a small particle will travel through the ‘lens’ region is governed
by a second critical initial height Ψ s

A∗, at which a small particle passes through
point A. Small particles starting above this critical height, Ψ s

A∗<ψ
s
enter 6ψG will pass

through the upper portion of the ‘tail’ FGAF following (3.23), with φ ∈ [φE, φ
s
AG].

Concentration φs
AG and coordinates (ξ s

AG, ψ
s
AG) where the particle crosses AG can be

found by equating (3.23) with a numerical form of (2.31) and (2.32). The equivalent
concentration to φs

AG on the right-hand side of shock AG, at ξ = ξ s
AG provides the

initial condition for the motion through the upper part of the ‘lens’ FGBCA given by
(2.19). The particles then pass across AC into the lower ‘lens’ and ‘tail’ regions and
then exit across EF.

The small particles starting below the critical height Ψ s
A∗ at ψR < ψ

s
enter 6 Ψ s

A∗ do
not pass through the ‘lens’, but just recirculate within the ‘tail’. Their motion through
the upper portion of the ‘tail’ FGAF is given by (3.23) with φ ∈ [φE, φ

s
FA] until

they cross FA at ξ s
FA. Concentration φs

FA and position ξ s
FA are both found by solving

ψ s=ψR in (3.23), and provide the initial condition for (3.18) in the lower portion of
the ‘tail’. The particle path replicates (3.19) with φs

FA and ξ s
FA replacing φs

EA and ξ s
EA,

and concentration φ in the range φs
FA 6 φ 6 φE. As previously, the particle exits the

breaking wave across EF at a final height ψ s
EF.

Figure 15 shows how the initial starting height of the large particles (superscript l)
also determines which parts of the breaking wave they pass through. All the large
particles start in the lower domain at a height ψR <ψ

l
enter < 0 (with ẑ< ẑR) and travel

upstream at this height before meeting CD at distance ξ l
enter= ξ l

CD given by (3.9). Upon
entering the breaking wave, the large particles circulate through the lower portion of
the ‘lens’ CDEAC following (3.10). Most of the coarse grains cross AC at a distance
ξ l

AC given by (3.11), with the particle passing through point A (i.e. ξ l
AC= ξA) defining

a critical height Ψ l
A∗

Ψ l
A∗ =ψR + 1

4(ξC − ξA). (3.24)

Most of the large particles initially start above this critical height, ψR <ψ
l
enter <Ψ

l
A∗,

cross AC and follow paths in the upper portion of the ‘lens’ governed by (3.12). The
initial condition that ξ l = ξ l

AC when φ = φR gives the path through the upper portion
of the ‘lens’ AGBCA as
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FIGURE 15. A sketch showing how the large particles may pass through different parts of
the ‘lens-tail’ structure depending on their initial starting height (not to scale). All of the
large grains pass through the ‘lens’ region (shown with solid colour), but the large grains
starting below the critical height Ψ l

A∗ also pass through the ‘tail’ region (cross-shaded).
Critical height Ψ l

A∗ corresponds to the physical height Zl
A∗ = z(Ψ l

A∗). Two particle paths
are shown with thin dashed lines and black arrows, whilst the particle path for the critical
height Ψ l

A∗, which passes through point A, is shown with a thin solid line and white
arrows. The structure of the breaking wave is shown with thick solid lines.

ξ l = ξA + ψR −ψ l
enter + 1

4(ξC − ξA)

F(φ)+ (1− φ)F′(φ) , (3.25a)

ψ l = ψR − F′(φ)(ξ l − ξA). (3.25b)

However, there are a few large particles that start below the critical height Ψ l
A∗ <

ψ l
enter < 0, and cross EA into the ‘tail’ region. Their initial motion through the ‘lens’

CDEAC is given by (3.10) with φ ∈ [0, φl
EA], where concentration φl

EA and the point
of crossing (ξ l

EA, ψ
l
EA) are found by equating (3.10) with (2.25). As with the small

particles, the motion of the large particles through the lower part of the ‘tail’ EAFE
is governed by characteristics (2.27) and local velocity (3.3a), which combine to give
the governing differential equation

d
dφo

((F(φo)+ (1− φo)F′(φo)) ξ l)= (1− φo)
d

dφo
(ψEA + F′(φo)ξEA(φ)). (3.26)

This can be integrated by parts with ξ l = ξ l
EA at φ = φl

EA to give

ξ l = ξC + g3(φ
l
EA)(ξ

l
EA − ξC)+ g4(φ)− g4(φ

l
EA)

g3(φ)
, (3.27a)

ψ l = ψEA(φ)− F′(φo)(ξ l(φ)− ξEA(φ)), (3.27b)
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where φ ∈ [φl
FA, φ

l
EA] and functions g3(u), g4(u) are defined as

g3(u) = Aγ
4γ
(1− u)(1− γ − γ u)2, (3.28a)

g4(u) = ψRγ

(
4

2γ − 1

)1/3

(1− u)
(
3γ u− (1+ γ ))−2/3

. (3.28b)

The coarse grains meet the no-mean-flow line FA at streamwise distance ξ l
FA and

concentration φ=φl
FA, which are found from (3.27b) by solving ψ l=ψR. The motion

through the upper ‘lens’ is governed by a similar differential equation to (3.26)

d
dφo

((
F(φo)+ (1− φo)F′(φo)

)
ξ l
)
= (1− φo)

d
dφo

(
F′(φo)ξFA(φ)

)
, (3.29)

with φ = φl
FA at ξ l = ξ l

FA giving

ξ l = ξC + g3(φ
l
FA)(ξ

l
FA − ξC)+ g4(φ)− g4(φ

l
FA)

g3(φ)
, (3.30a)

ψ l = ψR − F′(φo)(ξ l(φ)− ξFA(φ)). (3.30b)

These grains then cross shock AG at point (ξ l
AG, ψ

l
AG), and move through the upper

portion of the ‘lens’ AGBCA following

ξ l = ξA + F(φl
AG)+ (1− φl

AG)F
′(φl

AG)

F(φ)+ (1− φ)F′(φ) (ξ l
AG − ξA), (3.31a)

ψ l = ψR − F′(φ)(ξ l(φ)− ξA), (3.31b)

where φl
AG is the concentration on the right-hand side of shock AG at (ξ l

AG, ψ
l
AG). The

particles finally cross BC at (ξ l
BC, ψ

l
BC) and exit the breaking wave at this height.

Like the recirculation in the ‘lens’, the small and large particle paths are
parameterised by ψ s

enter and ψ l
enter, respectively. The critical heights Ψ s

E∗, Ψ
s

A∗ and
Ψ l

A∗ determine which of the ‘lens’ and ‘tail’ regions the particles pass through.
A typical set of paths through the ‘lens-tail’ structure is shown in figure 13(c) for
γ =0.9. Despite the ‘tail’ region, the paths of the small particles through the ‘lens-tail’
structure are qualitatively similar to the paths through the ‘lens’ shown in figures
13(a,b). However the additional motion of the large particles through the ‘tail’ region
means that these paths are very different to previous cases. It is useful to analyse
this further by calculating the recirculation times.

3.3. Recirculation times
Using the particle paths calculated in §§ 3.1 and 3.2, it is possible to numerically
calculate the recirculation times for large and small particles to travel through the
domain shown in figure 13. Small particles start at x = −0.44 in the upper domain
z > zR and travel downstream towards the breaking wave. They recirculate within
the breaking wave, before travelling upstream and exiting across x = −0.44 in the
lower domain z< zR. Despite the presence of the ‘tail’ region, there is no qualitative
difference between the small particle recirculation times in any of the solutions.
The large particles start at x = 0.1888 in the lower domain and travel upstream.
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FIGURE 16. Recirculation time for large particles to travel through the region shown
in figure 13. The particles start in the lower domain, downstream of the breaking wave
at x = 0.1888. In a frame translating with the breaking wave, the particles are swept
upstream towards the wave, recirculate within the wave, before travelling downstream back
to x= 0.1888. The recirculation time increases significantly as zl

enter approaches 0.5 since
the horizontal velocity û(z) tends to zero. The recirculation time also increases significantly
for the ‘lens-tail’ structure as zl

enter→Hdown= 0.1 (inset), with large particles recirculating
very slowly through the ‘tail’ region at the rear. This behaviour is unique to the ‘lens tail’
and it not found for any of the ‘lens’ structures.

They recirculate in the breaking wave, before travelling back downstream and exiting
the region in the upper domain at x= 0.1888. The recirculation times for these paths
are shown in figure 16. The recirculation time tends to infinity as zl

enter → 0.5 for
all the structures, since û(z) tends towards zero in this limit. The large particles
spend an increasing amount of time travelling upstream towards the breaking wave
and travelling downstream back towards x = 0.1888 after recirculating. However,
the ‘lens-tail’ structure also shows an increase in the recirculation time in the limit
zl

enter → Hdown, with large particles starting close to Hdown = 0.1 passing through
the ‘tail’. The concentration in the ‘tail’ is very close to φ = 1, hence (1.3a) implies
that the vertical velocity is very low. Close to the no-mean-flow line z = zR, the
horizontal velocity û(z) is very close to zero, so the large particles take a long time
recirculating through the ‘tail’. Although there is a smooth transition between the path
length of a particle starting above Zl

A∗ = z(Ψ l
A∗) and travelling through just the ‘lens’,

and a particle starting below Zl
A∗ that passes through both the ‘lens’ and ‘tail’, there

is a sharp change in the velocity of the latter particle as it crosses EA. This causes
the large increase in the recirculation time at z = 0.1042, with the large particle at
this height passing through both the ‘lens’ and ‘tail’ regions.

4. Conclusions
Debris and pyroclastic flows typically exhibit large particle-rich fronts, which can be

shouldered aside to form levees that laterally confine the flow and enhance its run out.
The coarse grain fronts are able to exist and grow because of a complex recirculation
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zone just upstream of the front, which are known as a ‘breaking size-segregation
wave’. The recirculation zone is established because particle-size segregation enables
overrun large particles to rise back up into the faster moving parts of the flow near
the surface, whilst enabling the small particles that are sheared over the top of the
large to percolate back down into the slower parts of the flow. The primary aim of
this paper has been to examine exact solutions for the structure of the breaking wave
using a continuum model with an asymmetric cubic segregation flux (1.5). The cubic
flux is parameterised by a single parameter γ which controls the difference between
the maximum speed of a single small particle falling through a region of many large
particles and the speed of a large particle rising through a region of many small grains
(Gajjar & Gray 2014; van der Vaart et al. 2015). For 0 6 γ 6 0.5, the segregation
flux is convex (up), whilst for 0.5< γ 6 1, it is non-convex, with the non-convexity
allowing semi-shocks to form.

The method of characteristics is used to derive three fundamentally different
solution structures shown in figures 10 and 12, which are dependent on the amount
of asymmetry γ . Convex flux functions (0 6 γ 6 0.5) give rise to a ‘lens’-like
solution formed of two shocks and two expansion fans. This is very similar to
the ‘lens’ solution of Thornton & Gray (2008); however, there is no rotational
symmetry about the centre of the ‘lens’, and point B at the top of the breaking wave
lies further downstream. Non-convex flux functions with a small amount of asymmetry
(0.5<γ 6Γ = (5+√5)/10) also give a ‘lens’ solution, with the only difference being
that a semi-shock AB separates the upper expansion fan from the upstream region of
small particles, causing the top of the wave to lie even further downstream. Although
the structure of the ‘lens’ is affected by the amount of asymmetry, the ‘lens’ has
a constant length of −4ψR, irrespective of γ . The transformed no-mean-flow height
ψR is only dependent on the velocity profile u(z) and the vertical height of the
wave Hup − Hdown, meaning that the length of the ‘lens’ solution is independent of
the segregation flux. The length is thus the same in both the convex and non-convex
cases, and is equal to the length of the breaking wave for the quadratic flux (Thornton
& Gray 2008). The combination of higher amounts of asymmetry and the collective
motion of large particles for Γ <γ 6 1 produces a new ‘lens-tail’ structure. The ‘tail’
is formed by an additional expansion and compression wave upstream of the ‘lens’,
and significantly increases the total length of the breaking wave. However the length
of ‘lens’ region in the ‘lens-tail’ structure remains very close to the length of the ‘lens’
in the other solutions, i.e. −4ψR.

The precise asymmetric segregation flux must still be determined for the recircula-
ting chute flow regime, but the results of this paper provide the general framework
for deriving the breaking-wave structure. The three structures presented would be
qualitatively the same for other (non-cubic) flux functions that satisfy the conditions
of § 1.3; namely that F(φ) has a maximum at φmax = φR, with 0 < φmax < 1/2 and
F(φmax), and that F has at most one inflexion point in the interval (φmax, 1). The
derivation of the structures is given in a general form, and may be extended to other
flux functions. For example, the derivation of the convex ‘lens’ structure in § 2.1
is more general than that of Thornton & Gray (2008), and can be applied directly
to other convex (non-cubic) flux functions, such as the asymmetric flux functions
presented by Marks et al. (2012) and Tunuguntla et al. (2014). The non-convex ‘lens’
(§ 2.2) would also apply directly to non-convex functions in which φE (1.10b) is
greater than φR. Non-convex functions with φE < φR would produce a ‘lens-tail’
solution that is qualitatively similar to figure 12(c). The analysis would also follow
directly up to (2.24), with numerical integration needed for (2.24)–(2.36).



498 P. Gajjar and others

The particle paths were calculated implicitly in terms of the local concentration φ
and are shown in figure 13. The small and large particle paths are parameterised by
the initial starting heights ψ s

enter and ψ l
enter, with figures 14 and 15 illustrating the three

critical heights Ψ s
E∗, Ψ

s
A∗ and Ψ l

A∗ for the ‘lens-tail’ structure that determine which of
the ‘lens’ and ‘tail’ regions the particles pass through. Small particles starting above
Zs

E∗ = z(Ψ s
E∗) and small particles starting below Zs

A∗ = z(Ψ s
A∗) pass through only the

‘lens’ and ‘tail’ regions, respectively, whilst small particles starting in Zs
A∗6 zs

enter 6Zs
E∗

pass through both the ‘lens’ and ‘tail’ regions. Some small particles are able to
recirculate only in the ‘tail’ region, but the large particles always travel through
the ‘lens’ region. The majority of the large particles start above Zl

A∗= z(Ψ l
A∗) and just

travel through the ‘lens’, but a few large particles start below this height, and also pass
through the ‘tail’ in addition to the lens. It is the motion of these large particles which
has a significant effect on the recirculation time shown in figure 16. Although the
recirculation time tends to infinity for large particles starting near the no-mean-flow
line z= zR, the motion of large particles through the ‘tail’ in the ‘lens-tail’ structure
also increases the recirculation time significantly for particles starting close to
z= Hdown, with the velocity in the ‘tail’ near the no-mean-flow line close to zero in
both the normal and downstream components.

It was exactly this kind of behaviour that was observed in both the moving-bed
flume experiments and numerical discrete particle method simulations in § 1.1.
Whilst most large particles recirculated quickly at the front, a few large particles
recirculated much more slowly through regions of many small particles upstream,
creating a ‘tail’-like region. The correspondence between this behaviour and the
new ‘lens-tail’ structure for the asymmetric cubic flux (1.5) in figure 6 shows that
the flux function of van der Vaart et al. (2015) gives qualitative agreement in a
very different physical environment, with their reported value of γ = 0.89 producing
a ‘lens-tail’ solution. As the asymmetry is essential for producing a ‘tail’, this paper,
therefore, provides further physical evidence for the asymmetry between large and
small particle segregation speeds, and shows how an asymmetric continuum model
with a cubic flux (Gajjar & Gray 2014; van der Vaart et al. 2015) captures all of the
essential behaviour. The similarity between the physical experiments and numerical
simulations shows that MercuryDPM could be a valuable tool in future research.
Extensive experimental and numerical work is currently under way to analyse the
particle motion within the breaking wave, which may also help to answer some wider
segregation questions that remain unanswered in this framework. For instance, the
robustness of the ‘lens’-length (1−α)(Hup−Hdown)

2/Sr in all three structures suggests
that the recirculating motion in a moving-bed flume could be a useful method of
examining how the non-dimensional segregation coefficient Sr varies with particle-size
ratio. Although this relationship has been deduced from DPM simulations (Thornton
et al. 2012b), an experimental verification is still lacking.
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Appendix A. Features of hyperbolic solutions
This appendix describes some of the features found in solutions to hyperbolic

equations. For further general information on hyperbolic equations, the reader is
referred to Rhee et al. (1986), whilst in particular Gajjar & Gray (2014) provides
further details of deriving exact solutions to segregation problems. Solutions may be
constructed using the method of characteristics (Whitham 1974; Billingham & King
2001), where the concentration φ is constant along characteristic curves, otherwise
known as characteristics. Comparing the (quasi-linear) segregation (2.2),

û
∂φ

∂ x̂
− ∂

∂ ẑ
F(φ)= 0, (A 1)

with the full derivative of φ with respect to an arbitrary variable s

dφ
ds
= dx̂

ds
∂φ

∂ x̂
+ dẑ

ds
∂φ

∂ ẑ
, (A 2)

implies that the concentration φ is constant along characteristics curves given by

dx̂
ds
= û,

dẑ
ds
=−F′(φ). (A 3a,b)

These characteristics become straight lines under the transformation to depth-averaged
velocity (ξ , ψ) coordinates (2.4)

ξ = x̂, ψ(ẑ)=
∫ ẑ

0
û(ẑ′) dẑ′, (A 4a,b)

with concentration φ equal to φλ along lines with constant gradient (2.6)

∂ψ

∂ξ
=−F′(φλ)=−Aγ

(
3γφ2

λ − 2(1+ γ )φλ + 1
)
. (A 5)

Note that (ξ , ψ) coordinates are also streamfunction coordinates (Gray & Ancey
2009). As shown in figure 17(a) characteristics of different concentrations may
collide, leading to the formation of a shock. The shock has gradient (2.7)

dψ
dξ
=−JF(φ)K

JφK , (A 6)

with the ‘jump’ brackets Jf K= f+− f− mathematically representing the physical jump
in concentration across the interface that is pictured in figure 17(b). Figure 17(c)
shows how characteristics may diverge away from each other in a rarefaction
fan. Physically, this leads to a smoothly varying concentration field, as shown in
figure 17(d). Non-convex flux functions also give rise to a ‘semi-shock’ structure, in
which characteristics lie parallel to the shock on one side, but collide with it on the
other. One such ‘semi-shock’ is pictured in figure 17(e), with figure 17( f ) showing
how there is a smooth variation in the concentration between φR and φM, before a
sharp jump in the concentration from φ = φM to φ = 1. Finally, characteristics may
also converge towards each other, without colliding, leading to the formation of a
compression wave (figure 17g). This also leads to a smoothly varying concentration
field, as shown in figure 17(h). These hyperbolic features are, however, idealised
solutions to the full segregation equation. The stochastic, random-walk nature of
particle motion in real world flows causes diffusive remixing between the two species
that smooths over any sharp discontinuities in concentration that occur at shocks
(Gray & Chugunov 2006; Gray et al. 2015).
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FIGURE 17. Exact solutions to hyperbolic equations may be constructed using the method
of characteristics. Solutions are constructed by determining the position of characteristics,
or lines upon which the concentration φ is constant, with figures (a,c,e,g) showing the
solutions in (ξ , ψ) coordinates. These solutions may be physically visualised by plotting
the concentration φ as a function of the height ψ at a particular downstream position
ξ0, with sketches shown in figures (b,d, f,h). Characteristics may collide and form a shock
(a), which physically corresponds to a sharp jump in the concentration from φ= 1 below
the shock to φ = 0 above the shock (b). Characteristics may diverge in a rarefaction fan
(c), giving a smoothly varying concentration field from φ = φR to φ = 1 (d). Non-convex
segregation flux functions give rise to semi-shocks, with characteristics lying parallel to
the semi-shock on the lower side, but colliding with it on the upper side (e). There is a
smoothly varying concentration field between φ = φR and φ = φM, with a sharp jump in
the concentration from φ=φM to φ=1 at the height of the semi-shock ( f ). Characteristics
may also converge to form a compression wave (g), which also leads to a smoothly
varying concentration field (h) from φ = φ0 to φ = 1.
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Appendix B. Derivation of equations governing shock AG
Following Rhee et al. (1986), this appendix derives governing equations for

the shock AG, as the concentration changes along both sides of the shock. The
compression wave to the left of shock AG has characteristics of concentration φleft
given by (2.30)

ψ =ψR − F′(φleft)
(
ξ − ξ̃FA(φleft)

)
, (B 1)

where ξ̃FA(φ
o) = ξFA(φ). The rarefaction fan (2.17) to the right of shock AG has

characteristics of concentration φright,

ψ =ψR − F′(φright)(ξ − ξF), (B 2)

whilst the shock condition (2.7) governs the gradient of AG

dψ
dξ
= c(φleft, φright)=−F(φleft)− F(φright)

φleft − φright
. (B 3)

Treating φleft and φright as independent variables and using the chain rule gives

dψ
dξ
= c(φleft, φright)=

∂ψ

∂φleft
+ ∂ψ

∂φright

dφright

dφleft

∂ξ

∂φleft
+ ∂ξ

∂φright

dφright

dφleft

, (B 4)

which, after rearranging, implies that

dφright

dφleft
=−

c(φleft, φright)
∂ξ

∂φleft
− ∂ψ

∂φleft

c(φleft, φright)
∂ξ

∂φright
− ∂ψ

∂φright

. (B 5)

The compression wave and the rarefaction fan meet at the shock, and so (B 1) and
(B 2) govern both the height ψAG and downstream position ξAG of the shock

ξAG(φleft, φright) = F′(φleft)ξ̃FA(φleft)− F′(φright)ξF

F′(φleft)− F′(φright)
, (B 6a)

ψAG(φleft, φright) = ψR − F′(φleft)F′(φright)

F′(φleft)− F′(φright)

(
ξ̃FA(φleft)− ξF

)
. (B 6b)

Differentiating (B 6) gives

∂ξAG

∂φleft
= − F′(φright)F′′(φleft)(

F′(φleft)− F′(φright)
)2

(
ξ̃FA(φleft)− ξF

)+ F′(φleft)

F′(φleft)− F′(φright)
ξ̃ ′FA(φleft), (B 7)

∂ξAG

∂φright
= F′(φleft)F′′(φright)(

F′(φleft)− F′(φright)
)2

(
ξ̃FA(φleft)− ξF

)
, (B 8)

∂ψAG

∂φleft
=

(
F′(φright)

2
)
F′′(φleft)(

F′(φleft)− F′(φright)
)2

(
ξ̃FA(φleft)− ξF

)− F′(φleft)F′(φright)

F′(φleft)− F′(φright)
ξ̃ ′FA(φleft), (B 9)
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∂ψAG

∂φright
= − (F′(φleft))

2F′′(φright)

(F′(φleft)− F′(φright))2
(ξ̃FA(φleft)− ξF), (B 10)

which may be substituted into (B 5) to give (2.32)

dφright

dφleft
= c(φleft, φright)+ F′(φright)

c(φleft, φright)+ F′(φleft)

×
{

F′(φright)F′′(φleft)

F′(φleft)F′′(φright)
− F′(φleft)− F′(φright)

F′′(φright)

ξ̃ ′FA(φleft)

ξ̃FA(φleft)− ξF

}
. (B 11)

As ξFA(φ)= ξ̃FA(φ
o), (2.28) and (1.9) for the cubic flux function give

ξ̃FA(φ)= ξC − ψRγ

F′(φ)((2γ − 1)(1+ γ − 3γφ)2)1/3
, (B 12)

∂ξ̃FA(φ)

∂φ
=ψRγ

F′′(φ)(1+ γ − 3γφ)− 2γF′(φ)
(F′(φ))2((2γ − 1)(1+ γ − 3γφ)5)1/3

. (B 13)

Equations (B 12) and (B 13) may be used with (B 11) to numerically solve for the
changing concentration along the shock path.
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5. RADIAL MONODISPERSE FINGERING

This chapter describes some preliminary work on granular flow in a conical geom-

etry. A cone set-up was originally designed to produce a rotationally symmetric

version of the segregation fingering patterns shown in figure 1.4. However, the ini-

tial prototype experiments suggested that the geometry creates interesting patterns

with even monodisperse grains. A larger, precise experiment was designed, and

some early results are presented here.

5.1 Experiments in a conical geometry

5.1.1 Experimental methodology

A precise, axisymmetric cone of basal radius 446.4 mm, height 244.4 mm and incli-

nation angle ζ = 28.6° was created by gluing concentric PVC rings of decreasing

diameter, and tapering the side using a large lathe. The distance from the cone apex

to the basal perimeter was 508.4 mm. A metal bar of diameter 20 mm was attached

at the apex of the cone to provide support for the cylindrical hopper and gate. A

perspex cylinder with an outer diameter of 63 mm diameter and inner diameter of

57 mm was screwed onto the metal bar to create the hopper for the granular mate-

rial. A slightly larger 79 mm outer diameter cylinder was mounted on the outside

of the hopper as a spring loaded release gate. The bottom edge of this cylinder was

tapered at the same angle as the cone so that it could sit flush with the surface of

the cone. A metal bracket fixed onto the central metal bar controlled the upwards

travel distance of the gate, Gt. The height of this bracket could be adjusted in order

to set the volume fluxQ exiting from the gate. The base of the cone was made rough

by fixing a monolayer of particles to the bed in a multi-stage process. Firstly double

sided tape was stuck onto the base of the cone. Next, duck-tape (strong fabric tape)
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Figure 5.1: Sketch diagram showing the experimental set-up and the conical
coordinate system (inset). A solid PVC cone was constructed of basal radius
446.4 mm and inclination angle ζ = 28.6°. A monolayer of ‘deco’ beads of diame-
ter 750−1000µm were glued onto the surface of the cone to create a rough frictional
base. The cylindrical hopper was mounted on the central bracket, with a spring-
loaded gate allowing the 200− 250µm glass beads to flow over the cone. The height
of the metal bracket could be adjusted to change the travel of the gateGt, and hence
the initial flux released from the hopper Q. The glass beads spread steadily over
the surface of the cone before splitting into a regular pattern of fingers at a critical
radius rcrit. This flow is best described using the orthogonal conical coordinate sys-
tem (r, θ, z) shown in the inset, with r the radial distance from the apex of the cone
to the point down the length of the cone, θ the axial rotation around the cone, and
z the distance normal to the cone surface. The unit basis vectors in this coordinate
system are {er,eθ,ez}, with er pointing radially down the surface of the cone, eθ
pointing around the cone at a constant radial distance, and ez normal to the cone
surface. These unit vectors are a series of two rotations (5.1) of a standard Cartesian
coordinate system (X,Y,Z) that is fixed at the apex of the cone with unit vectors
{eX,eY ,eZ}. The transformation of Cartesian vector components (X,Y,Z) to conical
coordinates is given by (5.5).
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Flow
material

Grain type Spherical glass beads
Grain size 200 − 250µm, sieved
Colour Clear
Manufacturer Wheelabrator Plus
Product name ‘Vaquashene’

Basal
material

Bead type Spherical glass beads with
thin coloured metal coating

Bead size 750 − 1000µm

Colour Turquoise
Manufacturer Sigmund Lindner GmbH
Product name ‘Deco beads’

Flow
parameters

Inclination angle ζ = 28.6°
Initial fill volume 500 cm3

Flowing volume fraction1 ν = 0.55

Basal
friction

parameters2

Lower flow angle ζ1 = 23.25°
Upper flow angle ζ2 = 33.69°
hstart angle parameter ζ3 = 25.21°
Empirical length scale L = 0.50 mm

Typical grain size d = 0.225 mm

Empirical constant3 β = 0.136

Critical
heights

Flow stop height hstop(ζ) = 0.52 mm

Flow start height hstart(ζ) = 1.09 mm

Table A: A summary of the important experimental and modelling parameters that
were held constant for the runs listed in table B. Notes: 1The solids volume fraction
of the flowing material ν was assumed to be 0.55. 2The basal friction parameters
were determined by measuring the thickness of the deposit left at different angles
hstop(ζ) and the angle needed for stationary material to be remobilised ζstart(h). See
Pouliquen & Forterre (2002) and Edwards & Gray (2014) for further details. 3The
empirical constant β is taken to be equal to 0.136 for glass beads, regardless of the
roughness conditions (Pouliquen, 1999).

http://www.wheelabratorgroup.com/
http://www.sigmund-lindner.com/en.html
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was stuck onto the double sided tape, with the sticky side facing upwards. A single

layer of 750−1000µm diameter turquoise ‘deco’ beads (glass beads with a very thin

coloured metal surface manufactured by Sigmund Lindner GmbH) were attached

to the sticky tape. Finally, the beads were fixed in place by applying a very thin

layer of a water-glue solution to the surface. The glue solution filled in some of the

gaps between the beads, and prevented beads from being dislodged after multiple

experiments. A sketch of the experimental configuration is shown in figure 5.1, and

a summary of the important parameters is provided in table A.

Before each experiment, the travel distance of the gate Gt was set by fixing the

metal bracket a distanceGt above the top edge of the gate. The fluxQwas measured

by filming the decreasing level of the grains in the hopper over time. A scale on the

side of the hopper allowed the change in volume to be identified, with the change in

time determined from the video. The gate was held down next to the surface of the

cone whilst the hopper was filled with 500 cm3 of 200−250µm sieved spherical glass

beads. Upon releasing the gate, the spring-mechanism would make it quickly move

vertically upwards by the preset distanceGt, opening a gap ofGo = Gt cos ζ between

the basal surface and the bottom tapered edge of the gate. The grains could then

flow out of the hopper with constant flux Q. A number of experiments were per-

formed with different fluxes Q, as summarised in table B. The experimental results

were seen to be extremely sensitive to the basal friction, and so a vacuum cleaner

was used to remove any residual grains from the base after each run. Comments

on the sensitivity of the results to the basal friction are made in § 5.1.4.

5.1.2 A radial fingering instability

The typical behaviour of the experiments can be seen in the overhead photographs

in figure 5.2: the flow initially spreads radially in a circular manner, before splitting

into a series of individual channels. This remarkable fingering pattern is a contrast

to flow on a planar chute, where the flow is steady with a constant velocity and

uniform height provided the inclination angle is between ζ1 and ζ2 and the initial

flow height h > hstart. In addition, Pouliquen & Vallance (1999) showed that the

propagating front of such a flow is stable with respect to transverse perturbations,

and remains straight as it moves downstream. Figure 5.3(a) shows a space-time plot
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Run Flux Critical Radius No. MarkerNumber (cm3 s−1) rcrit (mm) Fingers

26 12.97 126.8 ± 15 43 ◯
27 13.20 147.0 ± 15 44 ×
30 11.93 156.4 ± 10 44 ◻
31 12.55 158.7 ± 15 46 ◇
32 11.38 147.4 ± 10 41 △
33 11.83 146.0 ± 10 42 ▽
34 18.05 190.0 ± 10 52 ☆
35 18.41 194.8 ± 10 51 ◯
36 19.22 191.0 ± 10 52 ×
37 19.68 187.5 ± 10 50 ◻
38 14.93 178.3 ± 15 47 ◇
39 15.17 177.7 ± 10 50 △
41 15.14 179.0 ± 10 49 ☆
42 16.41 192.2 ± 10 49 ◯
43 15.78 159.7 ± 10 40 ×
44 20.84 195.0 ± 15 47 ◻
45 21.32 201.2 ± 10 52 ◇
46 20.38 196.2 ± 15 49 △
47 32.11 241.5 ± 10 61 ▽
48 34.67 259.0 ± 10 62 ☆
49 34.83 254.0 ± 10 64 ◯
50 22.69 209.2 ± 10 56 ×
51 24.56 232.8 ± 10 58 ◻
52 23.48 222.4 ± 10 56 ◇
59 31.98 280.0 ± 25 66 ▽
60 32.82 268.8 ± 15 63 ☆
61 31.30 285.6 ± 10 62 ◯
63 27.58 223.8 ± 15 58 ×
64 28.10 245.0 ± 10 59 ◻
66 35.16 272.5 ± 10 69 ◇
67 34.83 280.8 ± 15 69 △
68 34.67 284.8 ± 10 64 ▽
69 34.83 281.7 ± 10 64 ☆

Table B: A list of the runs using monodisperse grains that are plotted in figures 5.8,
5.10 and 5.11.



43

1 sec

5 sec

10 sec

15 sec

20 sec

Run 30 Run 41 Run 52 Run 64

Figure 5.2: A series of overhead photographs showing how the flow evolves after
it exits from the gate. Photographs are shown at 1, 5, 10, 15 and 20 seconds after
the gate was released, for runs 30, 41, 52 and 64 from table B. Photographs from
top to bottom are in order of increasing time, whilst those from left to right are from
experiments with increasing flux. As would be expected, the runs with larger fluxes
spread further in a given time. Contour plots showing the temporal evolution of
the propagating front are shown in figures 5.4–5.7 for these runs.
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for a planar chute that was constructed by taking the middle column of pixels from

a series of overhead pictures taken at 100 frames per second, and laying them side-

by-side to give the downstream x − x0 with time t. Distance x0 is the downstream

distance at the top of picture. The light coloured area to the right of the picture is the

granular material, with the straight leading edge between the light and dark regions

indicating that the front propagates downstream at a constant speed of 0.148 m/s.

The chute was inclined at ζ = 28.6°, the same inclination angle as the cone, and the

gate opening height was Go = 2.63 mm. The equivalent space-time plot for the cone,

with the same gate opening height, is shown in figure 5.3(b). The front initially starts

from the gate at r = r0 at 0.148 m/s, which is shown with the dashed black line.

However, the curved profile shows that the front slows as it moves downstream.

This observation that the granular flow slows as it spreads radially is similar to

the radial spreading of other liquids, for example the axisymmetric spreading of

gravity-currents (e.g. Huppert & Simpson, 1980; Huppert, 1982; Takagi & Huppert,

2010).

The temporal evolution can be seen in further detail in contour plots of the prop-

agating front presented in figures 5.4–5.7. The front of the flow in each photograph

was found by contouring the red channel of the image, and contours were plotted

at 0.5 second intervals for the first 20 seconds after the gate was released. The con-

tours initially have a circular shape as the granular material spreads radially, and

progressively become closer together as the flow slows down. It can also be seen

that the circular shaped contours of the radial spreading regime become subject to

small axial perturbations long before the flow is seen to develop a pronounced fin-

gering pattern. These small perturbations could be due to inhomogeneities in the

bed, with small gaps between the fixed beads causing small perturbations to the

flow height. The small perturbations could also be due to inhomogeneity in the

filling of the hopper and the subsequent release. The role of these perturbations on

the fingering pattern will be discussed further in § 5.3.3. Other observations that

can be taken from these contour plots are that: 1) The contours are further apart

for later runs that have higher fluxes, showing that the front velocity increases with

the initial flux; 2) The fingering pattern develops at larger radii for higher fluxes.
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Figure 5.3: Space-time plots showing the propagation of the flow front over time.
Each plot is constructed by taking the middle column of pixels from a series of
overhead pictures and laying them size-by-side to give the downstream position
(x− x0 and r − r0 for the planar chute and cone, respectively) as a function of time t.
Constant x0 corresponds to an arbitrary downstream distance, whilst r0 is the radius
at which the flow exits the cylindrical hopper. Horizontal lines indicate stationary
grains. (a) For a planar chute, inclined at an angle ζ = 28.6° with an initial gate
opening height ofGo = 2.63 mm, the diagonal line indicates that the front propagates
at a steady speed of 0.148 m/s. (b) In the conical geometry, the front initially starts
at propagating at the same speed as the chute. The constant speed of 0.148 m/s is
shown by the diagonal dashed black line. However, as the front moves radially
downstream, it slows down as a result of the radial spreading. The gate opening
for the cone was also Go = 2.63 mm.
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This latter observation will be analysed in further detail in the following section by

examining the onset of the fingering instability.

5.1.3 The onset of the fingering instability

The onset of the fingering instability can be analysed by comparing the outermost

edge of the flow with a circular front. The same procedure as figures 5.4–5.7 was

used to find the edge of the flow, namely a single contour was found in the red

channel of the image. A circle was fitted to this edge, and the perimeter of the fitted

circle was compared to the actual perimeter of flow front. As shown in figure 5.8(a)

for run 64, the ratio of the actual perimeter to the fitted circle perimeter is initially

constant in region I as the flow spreads radially. This constant ratio is shown with

the grey horizontal dashed line. After the onset of the fingering instability in region

II, the development of individual channels causes the actual flow perimeter to be

much larger than the fitted circle perimeter. The ratio diverges away from the con-

stant value, with the increasing perimeter causing the ratio to increase as the flow

advances. The transition between the two regions occurs at a critical radius rcrit,

which is shown with the solid black marker. The critical radius is identified as the

first point at which the ratio diverges away from the constant value, with the error

shown with the vertical black dotted lines. The dynamics for all of the runs in table

B are plotted in figure 5.8(b), and share the same typical behaviour as in (a): All

of the runs display an initial constant ratio between the flow front perimeter and

the fitted circle perimeter, before the ratio diverges after the flow has fingered and

developed channels.

One might expect the constant ratio to be close to unity, however a simple scal-

ing argument is able give an approximation for the ratio. As sketched in figure 5.9,

the discrete nature of grains at the edge of the flow would increase the observed

perimeter. The number of grains of diameter d that can fit around a circle of radius

r is N = 2πr/d. Each of these grains contributes a semi circular length of πd/2, and

so the total perimeter length is Nπd/2 = π2r. Dividing this by the perimeter of a

fitted circle 2πr gives a ratio of π/2 ≈ 1.6, which is very close to that observed in

figure 5.8. Whilst this could be a plausible explanation for the ratio lying in the

range (1.5,2), the extra perimeter length provided by individual grains may not be
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Figure 5.4: The temporal evolution can be visualised by plotting the outer most
edge of the flow at specific time intervals. The first 20 seconds of the evolution of
run 30 are shown; the inner most contour is 0.5 sec after the gate has been released,
and all subsequent contours follow at 0.5 sec intervals. The edges of the flow were
found by contouring the red-channel of the photographs. Similar contour plots for
runs 41, 52 and 64 can be seen in figures 5.5, 5.6 and 5.7 respectively.
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Figure 5.5: Temporal evolution contours for the first 20 seconds of run 41. The
inner most contour is 0.8 sec after the gate has been released, and all subsequent
contours follow at 0.5 sec intervals. Similar contour plots for runs 30, 52 and 64 can
be seen in figures 5.4, 5.6 and 5.7 respectively.
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Figure 5.6: Temporal evolution contours for the first 20 seconds of run 52. The
inner most contour is 0.5 sec after the gate has been released, and all subsequent
contours follow at 0.5 sec intervals. Similar contour plots for runs 30, 41 and 64 can
be seen in figures 5.4, 5.5 and 5.7 respectively.
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Figure 5.7: Temporal evolution contours for the first 20 seconds of run 64. The
inner most contour is 0.8 sec after the gate has been released, and all subsequent
contours follow at 0.5 sec intervals. Similar contour plots for runs 30, 41 and 52 can
be seen in figures 5.4, 5.5 and 5.6 respectively.
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Figure 5.8: The fingering dynamics can be analysed by fitting a circle to the edge
of the flow, and examining the ratio of the flow edge perimeter to the fitted circle
perimeter. (a) The flow dynamics for run 64 illustrate the general behaviour. The
ratio of the actual flow perimeter to the fitted circle perimeter is constant in region I
where the flow spreads radially. However, the ratio diverges in region II when the
flow fingers, with the perimeter increasing due to the development of individual
channels. The transition between the two regions occurs at a critical radius rcrit.
This is shown with a solid black marker, and the error in identifying rcrit is shown
with the vertical dotted lines. (b) Each of the runs in table B is plotted with the
markers coloured by the flux value of that run. It can be seen that all the runs
initially display a constant ratio where the flow spreads radially, before the ratio
diverges when the flow fingers and splits into channels. As the flux increases, it can
be seen that the critical radius rcrit also increases.
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r

d/2

Figure 5.9: A sketch showing how edge length of discrete grains (of diameter d)
may increase the perimeter length above that of a circle circumference (of radius r).
The perimeter length is shown with a solid black line, and a typical circle perimeter
is shown with a dashed line. The ratio of the perimeter length to the fitted circle
length would be π/2 ≈ 1.6, and independent of the radius r. This is very close to the
constant ratio seen in figure 5.8.

detectable from the overhead images. Tests also showed that different circle fitting

algorithms gave different constant ratio values. Thus, the depature away from a

unit ratio could be from the combined errors of the edge detection and circle fitting

algorithms. The circle fitting is also more accurate for larger radii, and hence, for

some runs, there is a slight decrease in the ratio in region I once the radius is greater

than 200 mm. It can be seen that the transition from region I to region II occurs at

larger radii for higher fluxes; this suggests an increasing relationship between rcrit

and the fluxQ. This relationship can clearly be seen in figure 5.10, where the critical

radius rcrit is plotted against the flux Q for each run. The data are strongly indica-

tive of a linear relationship, with the least squares regression fit rcrit = kQ+ e giving

the dimensional constants k = 5.49 cm−2 s and e = 86 mm. This quantifies the previ-

ous observation that as the flux increases, the flow spreads further before fingering

and splitting into channels.

5.1.4 The number of fingers and the finger width

Figure 5.11 is a plot of the number of fingers against the initial flux Q, for all of

the runs in table B. There appears to be a linear relationship, with a least squares

regression fit giving a gradient of 9.7 × 105 m−3 s and an offset +31.8. For each of the

runs in table B, the images did not have a high enough pixel resolution to accurately

determine the finger width. However, the width was physically measured in a set
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Figure 5.11: The number of fingers appears to scale linearly with the initial flux Q.
The dashed black line is the least squares regression fit with gradient 9.7 × 105 m−3 s
and offset +31.8. Each of the runs from table B have the same colours and markers
as in figure 5.8.
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(a)

(b)

(c)

I

IIa

IIb

Figure 5.12: Individual channels have a series of mechanisms for readjusting the
width once an initial channel is formed. (a) A channel may itself narrow, or (b)
it could split again to form several new channels with smaller widths. Both of
these examples are taken from the contour plot of run 64 in figure 5.7. Overall, the
flow may thus behave something like the sketch shown in (c). The flow initially
spreads in an axisymmetric manner in region I, before becoming unstable at the
thick dashed line. Once an initial channel has been formed, the channels transition
and re-adjust in region IIa until they find their stable width. In region IIb, the flow
remains in its stable channels. Regions IIa and IIb are indistinguishable from each
other when examining the ratio of actual perimeter to fitted perimeter in figure
5.8(a).
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Run Flux No. Developed Mean Finger Standard Deviation
Number (cm3 s−1) Channels Width (mm) (mm)

5 15.28 62 19.0 3.06
6 15.39 62 17.8 3.67
7 14.97 61 18.6 2.10
8 23.16 55 17.3 4.77
9 23.65 57 17.2 4.52
10 23.65 49 18.3 4.46
11 24.17 45 17.8 4.88
12 12.85 55 17.6 1.93
13 12.74 55 18.4 2.52
14 12.60 55 17.9 3.20
23 7.12 49 17.2 1.48
24 7.21 48 17.4 1.75

Table C: A list of runs used to measure the finger width of developed channels.

of earlier runs directly on the cone surface. In order to get a consistent measurement

of the channel width, the measurement was taken at the edge of the cone for any

developed channels than flowed over the edge. Any finger that stopped on the cone

was not measured. The results are summarised in table C and appear to show that

the finger width has a constant value ∼ 18 mm. Note that the number of developed

channels is recorded in C, as opposed to the total number of fingers in B. Further

work is required to see whether these channels widths are stable, or whether they

gradually widen (or narrow) in time (Félix & Thomas, 2004; Deboeuf et al., 2006;

Takagi et al., 2011).

It was observed that the finger width and the number of fingers were sensitive to

the basal friction. In a few runs where residual grains were left on the cone surface,

the number of fingers was observed to (marginally) increase. Residual grains would

decrease the basal friction, suggesting that the number of fingers increases with

lower basal friction. These runs also had a greater variability in the finger width,

but this may be due to presence/absence of residual grains at different points on

the surface. Further work is needed to quantify the sensitivity to the basal friction;

however, changing the fixed particle base on the cone is not a trivial undertaking!

Due to the low pixel resolution of the images, further work is needed to ac-

curately determine the wavelength of the initial instability, possibly using a mod-

ulated inflow (Malloggi et al., 2006). However, there appears to be a non-trivial
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relationship between the initial instability wavelength and the width of a stable

developed channel. As can be seen in the contour plots in figures 5.4–5.7, individ-

ual channels have a series of mechanisms for re-adjusting the width once an initial

channel has been formed. Two examples from the contour plots of run 64 are shown

in figures 5.12(a,b), where it can be seen that a channel may narrow (a), or it may

split again to form a number of smaller channels (b). This suggests that the overall

flow may behave like the sketch in figure 5.12(c). The flow initially spreads in an ax-

isymmetric manner in region I, before becoming unstable and fingering at the thick

dashed line. The channels then undergo a series of adjustments in region IIa to find

their stable width, before flowing steadily down the stable developed channels in

region IIb. The two latter regions are indistinguishable from each other in region

II described in figure 5.8(a), and hence they are labelled as IIa and IIb. Analysing

these re-adjustment mechanisms using a high speed camera could potentially un-

cover new secrets about the ability of granular systems to naturally form patterns

(Aranson & Tsimring, 2008).

5.2 Modelling granular flow in a conical geometry

Dense granular flows can be mathematically described using continuum mass and

momentum equations with a µ(I)-rheology. It is, therefore, necessary to transfer

the vector equations (1.1)–(1.2) to an appropriate coordinate system for the conical

geometry. Readers who are familiar with conical curvilinear coordinate systems

may skip direct to § 5.3.

5.2.1 An orthogonal conical coordinate system

The flow in this geometry is best described using a conical coordinate system (r, θ, z),

in which r is the radial distance from the apex of the cone to the point measured

down the inclined slope of the cone, θ is the axial rotation around the cone, and z is

the vertical height normal to the cone surface. As shown in figure 5.1, the orthogo-

nal unit basis vectors in this coordinate system are {er,eθ,ez}. These are an adap-

tation of standard cylindrical polars but with er pointing radially down the surface
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of the cone, eθ pointing around the cone at a constant radial distance, and ez point-

ing normally to the cone surface. For a comprehensive explanation of orthogonal

curvilinear coordinate systems, the reader is referred to the texts by Happel & Bren-

ner (1965) or Ruban & Gajjar (2014). The conical unit vectors may be transformed

from the unit basis vectors {eX,eY ,eZ} of a Cartesian coordinate system (X,Y,Z)

fixed at the apex of the cone through a series of two rotations: 1) A rotation of the

Cartesian unit vectors through an angle of θ about the Z plane, followed by; 2) a

rotation through the constant angle ζ about the Y plane. The entire transformation

may be expressed using rotation matrices,

⎛
⎜⎜⎜⎜
⎝

er

eθ

ez

⎞
⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜
⎝

cos ζ 0 − sin ζ

0 1 0

sin ζ 0 cos ζ

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

cos θ sin θ 0

− sin θ cos θ 0

0 0 1

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

eX

eY

eZ

⎞
⎟⎟⎟⎟
⎠

, (5.1)

which quickly allows the conical basis vectors to be given in terms of Cartesian

basis vectors,

er = + cos ζ cos θ eX + cos ζ sin θ eY − sin ζ eZ, (5.2a)

eθ = − sin θ eX + cos θ eY (5.2b)

ez = + sin ζ cos θ eX + sin ζ sin θ eY + cos ζ eZ, (5.2c)

and the Cartesian basis vectors to be given in terms of the conical basis vectors

eX = + cos ζ cos θ er − sin θ eθ + sin ζ cos θ ez, (5.3a)

eY = + cos ζ sin θ er + cos θ eθ + sin ζ sin θ ez, (5.3b)

eZ = − sin ζ er + cos ζ ez. (5.3c)

Since the slope inclination ζ is fixed, it can be seen that the only non-zero derivatives

of the conical basis vectors are

∂er
∂θ

= cos ζeθ,
∂eθ
∂θ

= − cos ζer − sin ζez,
∂ez
∂θ

= sin ζeθ. (5.4a–c)

For every point in space r = r(X,Y,Z) = r(r, θ, z), the Cartesian (X,Y,Z) position

vector components are related to (r, θ, z) by

X = (r cos ζ + z sin ζ) cos θ, (5.5a)

Y = (r cos ζ + z sin ζ) sin θ, (5.5b)

Z = −r sin ζ + z cos ζ, (5.5c)
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where r cos ζ + z sin ζ is the projection of the point onto the plane at the base of

the cone, and θ is the rotation from the X-axis. Calculating the partial derivatives

∂r/∂r, ∂r/∂θ and ∂r/∂z from (5.5) gives the scale factors

ĥr = 1, ĥθ =M = r cos ζ + z sin ζ, ĥz = 1, (5.6a–c)

and the conical basis vectors (5.2). The scale factors in (5.6) resemble those of cylin-

drical polars, with the adaptation r cos ζ + z sin ζ due to the slope. Any vector, for

example the velocity u, can be expressed in conical coordinates with components

(ur, uθ, uz)

u = urer + uθeθ + uzez. (5.7)

5.2.2 Vector operators

Using the scale factors (5.6), the differential operator ∇ in conical coordinates is

given by

∇ = er
∂

∂r
+ 1

M
eθ

∂

∂θ
+ ez

∂

∂z
. (5.8)

The gradient of a scalar field, say the pressure p, is thus given by

∇p = er ∂p
∂r

+ 1

M
eθ
∂p

∂θ
+ ez

∂p

∂z
. (5.9)

Taking the vector dot product of operator (5.8) with u (5.7), and utilising the basis

vector derivatives (5.4) and orthogonality, implies that the divergence of u is given

by

∇⋅u = ∂ur
∂r

+ 1

M
∂uθ
∂θ

+ ur cos ζ

M
+ uz sin ζ

M
+ ∂uz
∂z

. (5.10)

Similarly, the vector gradient dyadic ∇u can be shown from first principles to be

∇u = (er
∂

∂r
+ 1

M
eθ

∂

∂θ
+ ez

∂

∂z
) (urer + uθeθ + uzez) , (5.11)

= dijeiej (i, j = r, θ, z) (5.12)

where the indices i, j are summed over r, θ, z. Note that the expression ab is the

second order tensor that results from the dyadic product of vectors a and b. The
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coefficients dij are given by

drr =
∂ur
∂r

, drθ =
∂uθ
∂r

, drz =
∂uz
∂r

,

dθr =
1

M
∂ur
∂θ

− uθ cos ζ

M
,

dθθ =
1

M
∂uθ
∂θ

+ ur cos ζ

M
+ uz sin ζ

M
,

dθz =
1

M
∂uz
∂θ

− uθ sin ζ

M

dzr =
∂ur
∂z

, dzθ =
∂uθ
∂z

, dzz =
∂uz
∂z

.
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(5.13)

Equations (5.7), (5.12) and (5.13) may be combined to give

u⋅∇u = er (ur
∂ur
∂r

+ uθ
M

∂ur
∂θ

−
u2
θ cos ζ

M
+ uz

∂ur
∂z

)

+eθ (ur
∂uθ
∂r

+ uθ
M

∂uθ
∂θ

+ uθur cos ζ

M
+ uθuz sin ζ

M
+ uz

∂uθ
∂z

)

+ez (ur
∂uz
∂r

+ uθ
M

∂uz
∂θ

−
u2
θ sin ζ

M
+ uz

∂uz
∂z

) .

(5.14)

Finally, following Happel & Brenner (1965), the divergence of a dyadic S = Sijeiej
(in which i, j are summed over r, θ, z) may be derived as

∇⋅S = er (
1

M
{ ∂
∂r

(SrrM) + ∂

∂θ
Sθr +

∂

∂z
(SzrM)} − Sθθ cos ζ

M
)

+eθ (
1

M
{ ∂
∂r

(SrθM) + ∂

∂θ
Sθθ +

∂

∂z
(SzθM)}

+Sθr cos ζ

M
+ Sθz sin ζ

M
)

+ez (
1

M
{ ∂
∂r

(SrzM) + ∂

∂θ
Sθz +

∂

∂z
(SzzM)} − Sθθ sin ζ

M
) .

(5.15)

5.2.3 Governing equations

The dense granular flow is described by the mass and momentum conservation

equations (1.1) and (1.2). Assuming that the density ρ is constant means that (1.1)

reduces to a divergence free velocity field, ∇⋅u = 0. Thus, equation (5.10) implies

that

0 = ∂ur
∂r

+ 1

M
∂uθ
∂θ

+ ur cos ζ

M
+ uz sin ζ

M
+ ∂uz
∂z

. (5.16)
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Consequentially, u⋅∇umay be written in conservative form as

∇⋅(u⊗u)= er ( 1

M
∂

∂r
(u2

rM) + 1

M
∂(uruθ)
∂θ

+ 1

M
∂(uruzM)

∂z
−
u2
θ cos ζ

M
)

+eθ (
1

M
∂

∂r
(uruθM) + 1

M
∂u2

θ

∂θ
+ 1

M
∂

∂z
(uθuzM) + uruθ cos ζ

M
)

+ez (
1

M
∂

∂r
(uruzM) + 1

M
∂(uθuz)
∂θ

+ 1

M
∂

∂z
(u2

zM) −
u2
θ sin ζ

M
) .

(5.17)

From (5.12) and (5.13), the symmetric strain rate tensor D = Dijeiej (1.4) has com-

ponents

Drr =
∂ur
∂r

, Dzz =
∂uz
∂z

Dθθ =
1

M
∂uθ
∂θ

+ ur cos ζ

M
+ uz sin ζ

M
,

Drθ =Dθr =
1

2
(∂uθ
∂r

+ 1

M
∂ur
∂θ

− uθ cos ζ

M
) ,

Drz =Dzr =
1

2
(∂uz
∂r

+ ∂ur
∂z

) ,

Dθz =Dzθ =
1

2
( 1

M
∂uz
∂θ

− uθ sin ζ

M
+ ∂uθ
∂z

) ,
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(5.18)

which link to the deviatoric stress τ through the constitutive relation (1.3). The

gravitational vector g points vertically down, and so g = −geZ , where the gravita-

tional acceleration constant g = 9.81 ms−2. Using (5.3c),

g = g sin ζer − g cos ζez. (5.19)

Through equations (5.9), (5.15), (5.17), and (5.19), the radial component of the mo-

mentum equation (1.2) can be written as

ρ(∂ur
∂t

+ 1

M
∂

∂r
(u2

rM) + 1

M
∂

∂θ
(uruθ) +

1

M
∂

∂z
(uruzM) −

u2
θ cos ζ

M
) (5.20)

= −∂p
∂r

+ ρg sin ζ + 1

M
∂

∂r
(τrrM) + 1

M
∂

∂θ
τθr +

1

M
∂

∂z
(τzrM) − τθθ cos ζ

M
.

Similarly, the axial component of the momentum equation is

ρ(∂uθ
∂t

+ 1

M
∂

∂r
(uruθM) + 1

M
∂

∂θ
u2
θ +

1

M
∂

∂z
(uθuzM) + uruθ cos ζ

M
) (5.21)

= − 1

M
∂p

∂θ
+ 1

M
∂

∂r
(τrθM) + 1

M
∂

∂θ
τθθ +

1

M
∂

∂z
(τzθM) + τθz sin ζ

M
+ τθr cos ζ

M
.
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whilst the normal momentum balance is

ρ(∂uz
∂t

+ 1

M
∂

∂r
(uruzM) + 1

M
∂

∂θ
(uθuz) +

1

M
∂

∂z
(u2

zM) −
u2
θ sin ζ

M
) (5.22)

= −∂p
∂z

− ρg cos ζ + 1

M
∂

∂r
(τrzM) + 1

M
∂

∂θ
τθz +

1

M
∂

∂z
(τzzM) − τθθ sin ζ

M
.

5.2.4 Boundary conditions

The mass and momentum equations, (5.16) and (5.20)–(5.22), are supplemented by

kinematic and dynamic boundary conditions at the surface z = s(r, θ, t) and base

b = z(r, θ, t) of the flow. The surface and basal interfaces are given by

F s = z − s(r, θ, t), F b = b(r, θ, t) − z. (5.23a,b)

The unit vectors normal to these interfaces are given by

ns = ∇F s

∣∇F s∣
, nb = ∇F b

∣∇F b∣
. (5.24a,b)

The kinematic boundary condition implies that particles on the surface stay on the

surface, and similarly for the base, i.e.

DF s

Dt
= ∂F

s

∂t
+us ⋅∇ F s = 0,

DF b

Dt
= ∂F

b

∂t
+ub ⋅∇ F b = 0, (5.25a,b)

where us = (usr, usθ, usz) and ub = (ubr, ubθ, ubz) are the surface and basal velocities, re-

spectively. Using the scalar gradient (5.9), this implies that

−∂s
∂t

− usr
∂s

∂r
− 1

M
usθ
∂s

∂θ
+ usz = 0, (z = s), (5.26a)

∂b

∂t
+ ubr

∂b

∂r
+ 1

M
ubθ
∂b

∂θ
− ubz = 0, (z = b). (5.26b)

The free-surface is assumed to be stress-free,

Ss ⋅ns = 0, (5.27)

where S = −p I + τ is the sum total of both the isotropic pressure and the deviatoric

stress, and I is the identity matrix. In particular, in the radial and normal directions,

this gives

p
∂s

∂r
− τrr

∂s

∂r
− τrθ

1

M
∂s

∂θ
+ τrz = 0, (5.28a)

−p − τzr
∂s

∂r
− τzθ

1

M
∂s

∂θ
+ τzz = 0, (5.28b)
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with all of the quantities evaluated at z = s. At the base, the frictional balance is

Sb ⋅nb = (nb ⋅ Sb ⋅nb)( u
b

∣ub∣
+nb) . (5.29)

5.2.5 Non-dimensional scaling

It is useful to non-dimensionalise the lengths using a typical radial distanceR and a

typical flow height H , with the ratio ε =H/R indicating the shallowness of the flow

r = Rr̃, z = εRz̃, M = R(r̃ cos ζ + εz̃ sin ζ) = RM̃. (5.30a–c)

The radial and axial velocities ur and uθ are assumed to scale with the gravity wave

speed
√
gH ; the mass balance equation (5.16) provides the scaling for uz. Thus

(ur, uθ, uz) =
√
gH(ũr, ũθ, εũz) t = R√

gH
t̃, (5.31a,b)

where t̃ is the non-dimensional time. Applying scalings (5.30) and (5.31) to (5.18)

implies that

Drr = ε
√

g

H

∂ũr
∂r̃

, Dzz = ε
√

g

H

∂ũz
∂z̃

Dθθ = ε
√

g

H
( 1

M̃
∂ũθ
∂θ

+ ũr cos ζ

M̃
+ εũz sin ζ

M̃
) ,

Drθ =Dθr =
1

2
ε

√
g

H
(∂ũθ
∂r̃

+ 1

M̃
∂ũr
∂θ

− ũθ cos ζ

M̃
) ,

Drz =Dzr =
1

2

√
g

H
(ε2∂ũz

∂r̃
+ ∂ũr
∂z̃

) ,

Dθz =Dzθ =
1

2

√
g

H
(ε 1

M̃
∂ũz
∂θ

− εũθ sin ζ

M̃
+ ∂ũθ
∂z̃

) ,
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(5.32)

The trace of D scales as

trD2 =D2
rr +D2

θθ +D2
zz + 2(D2

rθ +D2
rz +D2

θz) = 2(D2
rz +D2

θz) +O(ε2), (5.33)

and hence

∥D∥ =
√
D2
rz +D2

θz +O(ε). (5.34)

Combining (5.32) and (5.34) gives the non-dimensionalisation

(Drr,Dθθ,Dzz,Drθ,Drz,Dθz, ∥D∥)

=
√

g

H
(εD̃rr, εD̃θθ, εD̃zz, εD̃rθ, D̃rz, D̃θz, ∥D̃∥) .

(5.35)
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Using the fact that τ = µ(I)pD/∥D∥ (1.3) and p ∼ ρgH ,

(p, τrr, τθθ, τzz, τrθ, τrz, τθz,τ ) = ρgH(p̃, ετ̃rr, ετ̃θθ, ετ̃zz, ετ̃rθ, τ̃rz, τ̃θz, τ̃ ). (5.36)

The mass balance equation (5.16) can now be non-dimensionalised through equa-

tions (5.30) and (5.31) to give

0 = ∂ũr
∂r̃

+ 1

M̃
∂ũθ
∂θ

+ ũr cos ζ

M̃
+ εũz sin ζ

M̃
+ ∂ũz
∂z̃

. (5.37)

In addition to equations (5.20)–(5.22), equations (5.35)–(5.36) help to non-dimen-

sionalise the radial momentum equation

ε(∂ũr
∂t̃

+ 1

M̃
∂

∂r̃
(ũ2

rM̃) + 1

M̃
∂

∂θ
(ũrũθ) +

1

M̃
∂

∂z̃
(ũrũzM̃) −

ũ2
θ cos ζ

M̃
)

= −ε∂p̃
∂r̃

+ sin ζ + ε2 1

M̃
∂

∂r̃
(τ̃rrM̃)

+ ε2 1

M̃
∂

∂θ
τ̃θr +

1

M̃
∂

∂z̃
(τ̃zrM̃) − ε2 τ̃θθ cos ζ

M̃
.

(5.38)

Similarly, the non-dimensional axial momentum equation is

ε(∂ũθ
∂t̃

+ 1

M̃
∂

∂r̃
(ũrũθM̃) + 1

M̃
∂

∂θ
ũ2
θ +

1

M̃
∂

∂z̃
(ũθũzM̃) + ũrũθ cos ζ

M̃
)

= −ε 1

M̃
∂p̃

∂θ
+ ε2 1

M̃
∂

∂r̃
(τ̃rθM̃) + ε2 1

M̃
∂

∂θ
τ̃θθ

+ 1

M̃
∂

∂z̃
(τ̃zθM̃) + ε τ̃θr cos ζ

M̃
+ ε τ̃θz sin ζ

M̃
,

(5.39)

and the non-dimensional normal momentum equation is

ε(ε∂ũz
∂t̃

+ ε 1

M̃
∂

∂r̃
(ũrũzM̃) + ε 1

M̃
∂

∂θ
(ũθũz) + ε

1

M̃
∂

∂z̃
(ũ2

zM̃) −
ũ2
θ sin ζ

M̃
)

= −∂p̃
∂z̃

− cos ζ + ε 1

M̃
∂

∂r̃
(τ̃rzM̃)

+ ε 1

M̃
∂

∂θ
τ̃θz + ε

1

M̃
∂

∂z̃
(τ̃zzM̃) − ε2 τ̃θθ sin ζ

M̃
.

(5.40)

Assuming that the surface and basal interface positions (s, b) scale like z, i.e. (s, b) =

R(εs̃, εb̃), the stress-free boundary conditions (5.28) become

εp̃
∂s̃

∂r̃
− ε2τ̃rr

∂s̃

∂r̃
− ε2τ̃rθ

1

M̃
∂s̃

∂θ
+ τ̃rz = 0, (5.41a)

−p̃ − ετ̃zr
∂s̃

∂r̃
− ετ̃zθ

1

M̃
∂s̃

∂θ
+ ετ̃zz = 0, (5.41b)
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with all of the quantities evaluated at z̃ = s̃. Finally, the kinematic boundary condi-

tions (5.26) at the surface and base of the flow become

−∂s̃
∂t̃

− ũsr
∂s̃

∂r̃
− 1

M̃
ũsθ
∂s̃

∂θ
+ ũsz = 0, (z̃ = s̃), (5.42a)

∂b̃

∂t̃
+ ũbr

∂b̃

∂r̃
+ 1

M̃
ũbθ
∂b̃

∂θ
− ũbz = 0, (z̃ = b̃). (5.42b)

5.3 Steady axisymmetric flow

5.3.1 A Bagnold velocity profile

Consider the case of steady axisymmetric flow, in which ũθ = 0 and all of the tem-

poral and axial derivatives are zero. It is assumed that the flow is shallow, so that

ε = H/R ≪ 1. The leading order, O(1), terms from normal momentum equation

(5.40) imply that
∂p̃

∂z̃
= − cos ζ. (5.43)

The leading order balance from the normal component of the stress-free surface

(5.41a) implies that p̃ = 0 at z̃ = s̃, and thus the pressure is lithostatic throughout the

depth

p̃ = (s̃ − z̃) cos ζ. (5.44)

From (5.38), the leading order balance shows that

1

M̃
∂

∂z̃
(τ̃zrM̃) = − sin ζ. (5.45)

As (5.30c) implies that M̃ = r̃+O(ε), and the leading order balance from (5.41) gives

that τ̃zr = 0 on z̃ = s̃, it can be seen that

τ̃zr = (s̃ − z̃) sin ζ. (5.46)

Interestingly, at leading order, the flow over a cone is the same as for flow down

a planar chute, and the subsequent derivation is the same as for planar chute flow

(e.g. Andreotti et al., 2013; Gray & Edwards, 2014). For axisymmetric flow, (5.32)

and (5.34) imply that

D̃zr =
1

2

∂ũr
∂z̃

+O(ε2), ∥D̃∥ = 1

2

∂ũr
∂z̃

+O(ε), (5.47a,b)
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and hence (1.3) implies that

τ̃zr = µ(I) p̃ sgn(∂ũr
∂z̃

) . (5.48)

Assuming ∂ũr/∂z̃ to be positive, the combination of (5.44) and (5.46) imply that

µ(I) = tan ζ. (5.49)

Since the inclination angle of the cone ζ is constant, this implies that the inertial

number I = Iζ is constant,

Iζ = I0 (
tan ζ − tan ζ1

tan ζ2 − tan ζ
) , (5.50)

where ζ1 and ζ2 are the minimum and maximum angles for steady uniform flow,

and I0 is the constant defined in (1.6b). In non-dimensional variables, the definition

of I (1.6a) becomes

I = 2∥D̃∥d̃√
p̃ν

, (5.51)

where ν is the solids volume fraction and d̃ = εd is the (non-dimensional) typi-

cal grain size. The combination of (5.44) and (5.47) gives the ordinary differential

equation
∂ũr
∂z̃

=
Iζ
√
ν cos ζ

d̃
(s̃ − z̃)1/2, (5.52)

which integrates to show that the leading order radial velocity ũr obeys a Bagnold

velocity profile (Bagnold, 1954)

ũr =
2Iζ

3d̃

√
ν cos ζ(h̃3/2 − (s̃ − z̃)3/2), (5.53)

where h̃ = s̃ − b̃ is the depth of the flow.

5.3.2 Spreading dynamics

The spreading dynamics are controlled by the mass balance equation (5.37); at lead-

ing order, under the assumption of an axisymmetric flow, this becomes

1

M̃
∂

∂r̃
(ũrM̃) + ∂ũz

∂z̃
= 0. (5.54)

With the aid of the kinematic conditions (5.42), equation (5.54) may be depth-averaged

from z̃ = b̃ to z̃ = s̃ to give
∂

∂r̃
(r̃ũrh̃) = 0, (5.55)
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where ũr = (1/h̃) ∫
z̃=s̃

z̃=b̃ ũr(z̃)dz̃ is the depth integrated velocity. From the Bagnold

velocity profile (5.53), ũr may be explicitly calculated to be

ũr = Ũ0 h̃
3/2, (5.56)

with

Ũ0 =
2Iζ

5d̃

√
ν cos ζ. (5.57)

Integrating (5.55) implies that

Q̃0 = r̃ũrh̃, (5.58)

with Q̃0 = Q̃/2π the (non-dimensional) initial flux per unit radian. Combining equa-

tions (5.56) and (5.58) gives the flow depth h̃ and depth averaged radial velocity ũr

as functions of r̃

h̃ = (Q̃0

Ũ0

)
2/5

r̃−2/5, ũr = (Ũ2
0 Q̃

3
0)

1/5
r̃−3/5. (5.59a,b)

The (non-dimensional) Froude number Fr is the ratio of the depth averaged veloc-

ity ur to the gravity wave speed
√
gh cos ζ , and can be shown to scale as

Fr = 1√
cos ζ

(Ũ3
0 Q̃

2
0)

1/5
r̃−2/5. (5.60)

The Froude number is important in determining the basal friction law, with (1.5)

valid for Fr ⩾ β; if the Froude number drops below this value then the extended

friction formulation of Forterre & Pouliquen (2003) must be assumed. For the re-

mainder of the analysis it is assumed that Fr ⩾ β.

5.3.3 A critical height and radius for fingering

Section 5.1.3 revealed a linear relationship between the fluxQ and the critical finger-

ing radius rcrit. This relationship can be deduced from the leading order spreading

dynamics of § 5.3.2 by assuming that the onset of fingering occurs at a critical height

ĥcrit. From (5.56), the critical velocity when h̃ = h̃crit is

ũr∣crit = Ũ0 h̃
3/2
crit, (5.61)

and so (5.58) implies that

Q̃0 = (Ũ0h̃
5/2
crit) r̃crit. (5.62)



67

As the quantities in the brackets on the right hand side are constant, Q̃0 ∝ r̃crit. In

dimensional variables, this means that

Q = (2πU0h
5/2
crit) rcrit. (5.63)

There are a few reasons why the theory predicts a directly proportional relation-

ship between the flux Q and the critical radius rcrit, but the experimental results

of § 5.1.3 give an offset of e = 86 mm. The most significant error is likely to come

from the edge detection and circle fitting algorithms. As can be seen in the contour

plots in figures 5.4–5.7, the front appears to show small perturbations even whilst

the overall front shape is still roughly circular. Although these small perturbations

may develop and cause the front to become non-circular, the perturbations would

remain undetected by the current algorithms until they are sufficiently large. The

result is that current experimental techniques may only detect the onset of fingering

after it has actually happened, and thus predict the critical radius rcrit to be further

downstream that the theoretical value. The second reason contributing to the offset

may be the jamming around the gate that means zero flux at zero radius is imprac-

tical in the experiments. At gate travel distances below Gt = 1.5 mm, corresponding

to a gate opening of Go = 1.32 mm and a flux of Q = 7 cm3 s−1, mass did not flow

uniformly out of the hopper because of localised jamming. Despite the difference

in the offset e between the theory and experiments, if it assumed that the constant

of proportionality k is the same, then hcrit can be determined as

hcrit = (2πkU0)2/5 = 1.10 mm. (5.64)

The parameters used to calculate U0 are given in table A. The above value of hcrit

is very close to the experimentally determined value of hstart(28.6°) = 1.09 mm for

the glass beads and base used in the experiments. Whilst the flow will stop when it

reaches a height of hstop(28.6°) = 0.52 mm, any stopped material must attain a height

of hstart before it is remobilised. It is still an open question as to why hstart may be

the critical height for the flow, and what physical mechanism is at work such that it

is this height which causes the instability. One possible explanation could be based

on the work of Malloggi et al. (2006), who noticed that when the flowing height

is between hstart and hstop, there is a metastable regime in which the flow front is
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unstable to transverse perturbations. By using a modulated initial condition, they

showed that small perturbations to the front would coarsen and develop into a fin-

gering pattern. As granular material on a planar chute inclined between ζ1 and ζ2

flows steadily at a constant height (Pouliquen, 1999), it becomes difficult to obtain

the metastable regime between hstart and hstop. Although the initial flow height is

much higher than hstart, the radial spreading in the conical set-up causes the flow to

thin according to (5.59a). Once the flow has spread and thinned such that the height

drops below hstart, the propagating front would be unstable to the small axial per-

turbations observed in figures 5.4–5.7. These small perturbations would coarsen,

causing the flow front to finger and develop individual channels. Whilst this could

be a plausible explanation, further work is needed to confirm this hypothesis.

5.4 A depth-averaged rheological model

A recent depth-averaged version of the µ(I)-rheology (Gray & Edwards, 2014)

has been shown to accurately model the dynamics of both roll-wave instabilities

(Razis et al., 2014) and erosion-deposition waves (Edwards & Gray, 2014). The

two-dimensional generalisation (Baker et al., 2016) was also shown to predict the

velocity-profile scalings and flux to channel-width relationship. The key compo-

nent behind the formulation of this depth averaged µ(I)-rheology model was the

Bagnold velocity profile, and since it was shown in § 5.3.1 that the leading order

velocity profile in conical coordinates is also Bagnold, the depth-averaged model

could be extended to this geometry. The fact that the depth-averaged leading order

mass balance (5.58) alone is able to predict the linear relationship between the flux

and the critical radius lends promise that the complete depth-averaged model is

able to capture all of the subtle dynamics of this geometry.

By defining the depth-average f of a quantity f to be its average across the depth

of the flow h = s − b,

f = 1

h ∫
s

b
f dz, (5.65)



69

the mass and momentum equations (1.1)-(1.2) can be depth-averaged to give

∂h

∂t
+∇⋅(hu) = 0, (5.66)

∂

∂t
(hu) +∇⋅(χhu⊗u) +∇(1

2
gh2 cos ζ) = ghS + 1

ρ
∇⋅ (hτ ). (5.67)

The depth-averaging operation flattens the coordinate system to just (r, θ) space,

and so u = (ur, uθ) with the gradient operator reducing to

∇ = er
∂

∂r
+ 1

M
eθ

∂

∂θ
. (5.68)

The shape factor χ links the depth-average of products of velocities to the product

of depth-averaged velocities uu = χuu, and is dependent on the vertical velocity

profile. Savage & Hutter (1989) showed that χ = 6/5 for a parabolic velocity profile,

Pouliquen & Forterre (2002) showed that χ = 4/3 for a linear velocity profile with

no basal slip (5.81) whilst Börzsönyi et al. (2008) showed that χ = 5/4 for a Bagnold

profile (5.53). All of these values are close to 1, and Pouliquen & Forterre (2002)

showed that numerical simulations of slow granular flows are insensitive to the

particular value of χ chosen. As depatures away from unity cause problems in han-

dling grain-free regions (Hogg & Pritchard, 2004), it is assumed here for simplicity

that χ = 1 (e.g. Savage & Hutter, 1989; Gray et al., 1999, 2003; Baker et al., 2016). The

source term S (not to be confused with the stress S) is the result of gravity and basal

friction (5.29)

S = cos ζ (tan ζ − µb
ur
∥u∥

)er − cos ζµb
uθ
∥u∥

eθ. (5.69)

Finally, Baker et al. (2016) assumed that the depth-averaged deviatoric stress τ

scales as

hτ = ρυ h3/2D, (5.70)

with the depth-averaged strain rate tensor D equal to

D = 1

2
(∇u +∇uT) , (5.71)

and the depth-averaged viscosity coefficient υ given by

υ =
2L

√
g

9β

sin ζ√
cos ζ

(µ2 − tan ζ

tan ζ − µ1

) . (5.72)
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The relevant components for the 2-D quantities can be deduced from equations

(5.15), (5.17) and (5.18) by ignoring any terms with a z component. Strictly speak-

ing, sinceM includes z dependence, any products of quantities withMwould need

to have their depth-averaged product evaluated explicitly. For example Mu would

need to be calculated and related back to M and u to close the model. The math-

ematical complexity of this increases greatly. Motivated by the shallow water ap-

proximation in which ε = H/R≪ 1, equation (5.30c) implies thatM = r cos ζ +O(ε).

Since the z dependence lies at a higher order, it is therefore assumed for the sake of

simplicity and mathematical tractability thatM = r cos ζ . Putting all of this together,

the depth-averaged mass equation (5.66) in component form becomes:

∂h

∂t
+ 1

r

∂

∂r
(rurh) +

1

r cos ζ

∂

∂θ
(uθh) = 0. (5.73)

The radial component of the depth averaged momentum equation (5.67) becomes

∂

∂t
(hur) +

1

r

∂

∂r
(ru2

rh) +
1

r cos ζ

∂

∂θ
(uruθh) −

u2
θh

r
+ ∂

∂r
(1

2
gh2 cos ζ)

= hg cos ζ (tan ζ − µb
ur
∥u∥

) + 1

r

∂

∂r
(υh3/2r

∂ur
∂r

)

+ 1

r cos ζ

∂

∂θ
(1

2
υh3/2 (∂uθ

∂r
+ 1

r cos ζ

∂ur
∂θ

− uθ
r
))

− υh
3/2

r
( 1

r cos ζ

∂uθ
∂θ

+ ur
r
) .

(5.74)

Finally, the axial component of the momentum equation (5.67) becomes

∂

∂t
(huθ) +

1

r

∂

∂r
(ruruθh) +

1

r cos ζ

∂

∂θ
(u2

θh) +
uruθh

r
+ 1

r cos ζ

∂

∂θ
(1

2
gh2 cos ζ)

= −hg cos ζµb
uθ
∥u∥

+ 1

r

∂

∂r
(υh3/2r (∂uθ

∂r
+ 1

r cos ζ

∂ur
∂θ

− uθ
r
))

+ 1

r cos ζ

∂

∂θ
(υh3/2 ( 1

r cos ζ

∂uθ
∂θ

+ ur
r
))

+ 1

2

υh3/2

r
(∂uθ
∂r

+ 1

r cos ζ

∂ur
∂θ

− uθ
r
) .

(5.75)

Rather than assuming the tensorial form of the depth-averaged equations (5.66)–

(5.67), the above equations (5.73)–(5.75) can be derived directly from first principles

by depth-averaging (5.16) and (5.20)–(5.21). As these depth-averaged equations in
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conical geometry follow naturally from the work in §§ 5.2.1 and 5.2.2, they are stated

here for completeness. It is hoped that time-dependent solutions to these equations

will be able to model this radial monodisperse fingers and give further insight into

the physical mechanisms at work. However, such numerical simulations lie beyond

the scope of this thesis.

5.5 Bidisperse segregation patterns on a cone

The cone set-up was originally designed to study radial segregation patterns, and

so it is interesting to observe how a bidisperse mixture flows in this geometry. A

mixture containing 70% of 200−250µm spherical glass beads and 30% of 300−425µm

of angular Carborundum grains was prepared and loaded into the hopper, follow-

ing the procedure outlined in § 5.1. The gate travel was Gt = 2.0 mm giving a gate

opening of Go = 1.76 mm. The flux was not recorded for this experiment; however

it is expected to be similar to monodisperse runs 30 and 41 (table B) which had

gate travel values of Gt = 1.8 mm and Gt = 2.1 mm respectively. Six overhead pho-

tographs are presented in figure 5.13, showing the evolution of the flow at 1, 5, 10,

15, 20 and 25 seconds after the gate has been released. The close-up view in figure

5.14 shows that the bidisperse fingers on a cone also have coarse grained levees,

large-particle rich fronts and a channel lining containing less frictional fine grains.

These were also characteristic features of the channels produced through segrega-

tion on a planar chute in figure 1.4. However, in the conical geometry, the spreading

and thinning of the flow also promotes the fingering instability. The additional thin-

ning mechanism means that the channels are more prone to tip-splitting than the

planar chute. As compared to the monodisperse fingers in figure 5.2 which were

caused by thinning alone, the additional segregation mechanism causes the bidis-

perse flow to finger at an earlier time and smaller critical radius than the monodis-

perse flows.

Woodhouse et al. (2012) recently developed a model for bidisperse fingers using

the depth-averaged mass and momentum equations (5.66)–(5.67), together with a

depth averaged segregation equation (Gray & Kokelaar, 2010). Whilst their results
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(a) (b)

(c) (d)

(e) (f )

Figure 5.13: A series of overhead photographs showing how a bidisperse flow
evolves after it exits from the gate. The bidisperse mixture contained 70% of
200 − 250µm spherical glass beads and 30% of 300 − 425µm of angular Carborun-
dum grains. Panels (a)-(f ) show the flow at 1, 5, 10, 15, 20 and 25 seconds after
the gate was released, respectively. The gate travel Gt and gate-opening Go were
2.0 mm and 1.76 mm. Compared to the monodisperse flows in figure 5.2, the bidis-
perse mixture develops a pronounced fingering pattern within 5 seconds, at a much
smaller critical radius. This is a result of both thinning and segregation promoting
the fingering instability.



73

Figure 5.14: Fingers produced from a bidisperse mixture on a cone share the same
characteristics as the fingering-channels produced on a planar chute shown in fig-
ure 1.4, namely coarse grained levees, large-particle rich fronts and a channel-lining
containing less frictional small grains.

looked promising, the wavelength was grid-dependent. Work is now under way to

use the depth-averaged µ(I)-rheology to set the wavelength (Gray et al., 2015).

The segregation equation (1.12) in conical co-ordinates takes the form

∂φ

∂t
+ 1

M
∂

∂r
(φurM)+ 1

M
∂

∂θ
(φuθ)+

1

M
∂

∂z
(φuzM)− ∂

∂z
(F̃ (φ)) = ∂

∂z
(D∂φ

∂z
) , (5.76)

where φ is the small particle concentration. This may be depth-averaged through

the depth-averaging operation (5.65) to give

∂

∂t
(φh) + 1

r

∂

∂r
(rφurh) +

1

r cos ζ

∂

∂θ
(φuθh) − φ [∂s

∂t
+ usr

∂s

∂r
+ 1

M
usθ
∂s

∂θ
− usz]

+φ [∂b
∂t

+ ubr
∂b

∂r
+ 1

M
ubθ
∂b

∂θ
− ubz] + [F̃ (φ) −D∂φ

∂z
]
z=s

z=b

= 0, (5.77)

where φ is the depth-averaged concentration of small particles and φur, φuθ are the

depth-averaged fluxes of small particles in the radial and axial directions. The first

two square brackets disappear due to the kinematic boundary conditions at the

surface and base of the flow (5.26), whilst the third square bracket also vanishes as

a result of zero flux at the surface and base of the flow (3.3). Thus

∂

∂t
(φh) + 1

r

∂

∂r
(rφurh) +

1

r cos ζ

∂

∂θ
(φuθh) = 0, (5.78)

Following Gray & Kokelaar (2010), a number of assumptions allow the model to

be closed by relating φ, φur, and φuθ to the depth-averaged concentration φ and
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the depth averaged velocity u. Firstly, the avalanche is assumed to be inversely

graded, with large particles above the small particles. This assumption is holds if

the length scale for complete segregation is much less than the typical length scale

of the avalancheR. The interface between the two particles is assumed to lie at z = l,

i.e.

φ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 l ⩽ z ⩽ s,

1 b ⩽ z < l.
(5.79)

Thus the depth-integrated concentration φ can be calculated to be

φh = ∫
s

b
φdz = ∫

l

b
dz = l − b = η. (5.80)

Whilst the actual flow was shown to follow a Bagnold velocity profile, the simpli-

fying assumption is made that the velocity u scales linearly with the depth

u = αu + 2(1 − α)u(z − b
h

) . (5.81)

The parameter α controls the amount of shear across the layer, with α = 0 corre-

sponding to simple shear and α = 1 giving plug flow. This assumption captures

the leading order behaviour, and greatly simplifies the analysis. Using (5.81), the

depth-averaged radial concentration flux φur can be calculated to be

φurh = ∫
s

b
φur dz = ∫

l

b
αur + 2(1 − α)ur (

z − b
h

) dz

= urη − (1 − α) (1 − η
h
)urη.

(5.82)

Similarly, the depth-averaged axial concentration flux can be calculated to be

φuθh = uθη − (1 − α) (1 − η
h
)uθη. (5.83)

Substituting (5.82) and (5.83) into the depth-averaged segregation equation (5.78)

gives

0 = ∂

∂t
(φh) + 1

r

∂

∂r
(r {urη − (1 − α) (1 − η

h
)urη})

+ 1

r cos ζ

∂

∂θ
(uθη − (1 − α) (1 − η

h
)uθη) .

(5.84)

Gray & Kokelaar (2010) named this the ‘large particle transport equation’ since it

preferentially transports large particles to the front of the flow. A concentration-

averaged basal friction coefficient

µ = µl(1 − φ) + µsφ (5.85)
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allows (5.84) to be coupled with the depth averaged mass and momentum equa-

tions (5.73)–(5.75). In the above equation, µl and µs are independent basal friction

coefficients for the large and small phases respectively, with µl > µs required for

a frictional front and fingering instability to develop. If numerical simulations of

monodisperse flows on a cone prove successful, then the system of equations (5.73)–

(5.75), & (5.84) could be used for simulating bidisperse flows in this geometry.

5.6 Discussion and future work

This chapter has presented some early experimental results from granular flow over

a conical surface, along with a continuum model in a orthogonal conical coordinate

system. The experiments show that the flow initially spreads radially, before devel-

oping a beautiful fingering pattern. This fingering pattern is a contrast to flow on a

inclined plane, which has a steady velocity and uniform height with a stable front

that propagates as a straight line. As a result of the radial spreading in the conical

geometry, the velocity of the flow front decreases as it moves downstream. The the-

ory also predicts that the flow thins as it spreads. The critical fingering radius rcrit

can be seen to scale linearly with the initial flux Q; this relationship is also found

through a depth-averaged model at leading order. In addition, the depth-averaged

model suggests that the critical height at which the flow starts to develop fingers

is hcrit = 1.10 mm, which is within experimental error of hstart = 1.09 mm. Although

the exact cause of the fingering instability is currently unknown, one possible ex-

planation is that the flow becomes unstable to small perturbations once the flow

height has thinned below hstart. The small axial perturbations that can be seen in

figures 5.4–5.7 could then coarsen and develop into a full fingering pattern. How-

ever, further work is needed to confirm this hypothesis. Firstly a laser profilometer

could be used to provide experimental validation of the thinning law predicted by

(5.59a). Secondly, perturbations could be introduced to the flow at points where the

height is below hstart to determine whether the instability grows or decays away. If

these techniques do confirm the above hypothesis, the fundamental question still

remains as to the physical mechanism(s) causing the granular front to become un-

stable at heights below hstart. Image analysis using images from a very high speed
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camera, or colour-change experiments in which a batch of coloured grains is intro-

duced during the flow may provide some insights. Numerical simulations of the

full depth-averaged equations (5.66)–(5.75) may also be a valuable tool.

Further work is also needed to understand the transition region between the

initial fingering instability, and the development of channels that appear to have

a constant width. Are the width of the developed channels really constant, or do

they creep in time? Do more pronounced levees form as there is a larger mass

flux through the fingers? What sets the width of a stable channel? And finally,

what fundamental physical mechanism causes the initial fingers to re-adjust into

these stable channels? All of these questions are still open and could potentially

illuminate new secrets behind the behaviour of granular materials.

The fact that a monodisperse material can develop fingering patterns similar to

those observed through segregation in figure 1.4 highlights the complex nature of

the µ(I)-rheology. Yet, whilst many advances have been made in our understand-

ing of monodisperse flows, the rheology of bidisperse and polydisperse materials

is still an open question. Since the rheology has such an important influence on

the flow dynamics, further work in this area may uncover behaviour that is just as

significant as the segregation process.
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6. CONCLUSION

Size-segregation is an important process within dense granular flows that occur

in both geophysical and industrial environments. This natural sorting by size of

the constituents is not only problematic in industry, where a homogeneous mixing

is often desired, but also increases the destructive ability of natural avalanches by

playing a crucial role in the formation of coarse-grained levees that allow the flow

to travel over larger distances and at higher velocities. Understanding segregation

is thus of widespread importance, and this thesis has extended a continuum model

for segregation in dense granular flows. The major contribution of this work has

been to examine the influence of the local concentration field on segregation of a

bidisperse mixture; in particular, modelling the physical observations that a small

particle percolates downwards through a region of many large particles at a faster

rate than a large particle rises upwards through a region of many small particles.

Chapter 2, the paper titled “Asymmetric flux models for particle-size segregation in

granular avalanches”, is a theoretical study that introduces a revised model, which

takes into account the observations of an asymmetry between the segregation of

small particles surrounded by many large particles and large particles surrounded

by many small particles. A detailed derivation of the governing (bidisperse) seg-

regation equation is presented, which is used throughout the thesis. The paper

also introduces a new general class of asymmetric flux functions, which have the

property that their maximum amplitude is skewed towards lower concentrations of

small particles. The flux functions are also normalised to have the same amplitude

as the symmetric quadratic flux function, and may either be convex or non-convex

with a single inflexion point. With this new class of flux functions, the maximum

velocity of the small particles is increased above that obtained with the symmetric

quadratic flux, but the maximum velocity of the large particles is decreased. This
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entire class of general flux functions is, therefore, able to capture the behaviour that

large particles segregate in regions of many small particles at a slower rate than a

small particle segregating in regions of many large particles. The simplest mem-

ber of this class of flux functions is the simple cubic family of flux functions with

a single asymmetry parameter. This is used to match against experimental data in

chapter 3, and is also used to derive breaking wave structures in chapter 4. Chapter

2 also introduces the method of characteristics, that can be used to derive solutions

to the hyperbolic segregation equation in the limit of no diffusive remixing. Al-

though this limit is a theoretical simplification, it is useful in assessing the effects

of the asymmetric concentration dependence on the segregation. The remainder of

the chapter derives exact solutions for the cases of a homogeneous inflow and a

normally graded inflow, with small particles initially above the large. These exact

solutions demonstrate that the asymmetry causes the maximum segregation dis-

tance for a homogeneous inflow to become dependent on the initial inflow concen-

tration, with flows containing a higher proportion of small particles taking a larger

distance to completely segregate. The exact solution for the normally graded inflow

shows that the ratio of the distances for the first small particle to reach the base, and

the first large particle to reach the surface, becomes dependent on the strength of

asymmetry parameter.

Chapter 3, the letter titled Underlying Asymmetry within Particle Size Segregation,

used a classical shearbox set-up and the refractive index-matched scanning tech-

nique to experimentally study segregation dynamics on bulk and particle scales,

and compare it with the theoretical model derived in chapter 2. The asymmetry

between the small and large particle velocities is quantified, with a single small

particle segregating through regions of large particles three times faster than a sin-

gle large particle segregating in regions of small particles. The single small particle

also exhibits a step-like motion as it falls downwards through layers of large par-

ticles, whilst the motion of a single large particle motion is smoother, and likely to

be linked to the rearrangements of the surrounding small particles. Large parti-

cles are also seen to move quickest when they are close to other large particles at

an intermediate concentration. Measurements of the final segregation time, mean

displacement per cycle and the bulk concentration show very good agreement with
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the continuum segregation using a asymmetric cubic segregation flux function. Not

only does this provide experimental evidence for the asymmetric model, but it

also opens up parallels with other processes such as sedimentation and traffic flow

where asymmetric fluxes are commonly employed.

Segregation in natural granular avalanches can create a complex recirculation

motion: large particles that segregate to the top of the flow are transported towards

the front, where they are overrun and then re-segregated upwards. Chapter 4, the

paper titled “Asymmetric breaking size-segregation waves in dense granular free-surface

flows” analyses the asymmetric particle motion within this recirculation zone. A

moving bed flume was used to create a (mathematically) equivalent configuration

to the avalanche recirculation, and both experiments and discrete particle simula-

tions in this set-up revealed that, whilst the majority of large particles recirculate

very quickly towards the front of the flow, a few large particles travel very slowly

towards the rear and take a long time to recirculate. The asymmetric segregation

flux model in the non-diffuse hyperbolic limit is used to derive structures for this re-

circulation zone that are known as “breaking-waves size-segregation waves”. Com-

pared to previous solutions using a symmetric quadratic flux (Thornton & Gray,

2008), the non-convex asymmetric flux functions can produce a new ‘lens-tail’ struc-

ture, in which a few large particles recirculate very slowly towards the rear of the

flow. These particles are shown to take longer to recirculate, and also increase the

length of the breaking wave region.

Whilst the work in this thesis has analysed and experimentally validated a the-

ory for segregation in dense granular flows using asymmetric flux functions, a few

questions still remain open with regards to the model. Firstly, although the cubic

flux gives good quantitative agreement in a shearbox environment, the precise form

of the asymmetric flux function may depend on the exact flow configuration. The

amount of asymmetry may also be linked to the size ratio between the constituents,

with larger size differences exhibiting greater asymmetry. A firm understanding

of these parts of the model would allow this theory to be used confidently as a

predictive tool.
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The results of chapter 5 provide an important illustration of the context to the

entire segregation model. Granular materials are known to have a complex rhe-

ological behaviour, with monodisperse flows described by a µ(I)-rheology. The

rheology is linked closely to the basal friction through two angles, ζ1 and ζ2, which

are the angles at which a material starts to flow and starts to accelerate, respec-

tively. Between these angles, and provided the height is greater than the critical

height hstart, a monodisperse flow down an inclined plane will flow steadily with a

constant speed and uniform height. Previous authors (Malloggi et al., 2006) found

a metastable region with heights between hstop and hstart in which the flow front

was unstable to transverse perturbations. Whilst the authors acknowledged that

accessing this metastable regime can be problematic, the novel experiments in this

chapter in a conical geometry force the flow to consistently thin. It was seen that

at a critical height very close to hstart, the steady flow splits into a number of reg-

ular fingers. The only difference between a flow down a chute, and the flow on

the cone is the slowing and thinning, implying that the frontal instability is solely

due to the rheology in the region where the height is less than hstart. These results

demonstrate the importance of the rheology for monodisperse flows, and yet, the

rheology of bidisperse or polydisperse materials still remains poorly understood.

For example, it is still not known how segregation, or the local particle concentra-

tion, changes the rheology of the flow, or even whether the local rheology of the

flow changes the local segregation rate? At particle-scales, the rheology of a dense

granular flow and the segregation are both intrinsically linked to the inter-particle

contacts and the grain matrix, and so it is likely that they are both inter-related in

some manner. Limited work has been performed in identifying a possible inertial

number for polydisperse flows (Rognon et al., 2007; Tripathi & Khakhar, 2011), but

an extensive evaluation for this is required. Such an inertial number may provide

one way of linking segregation and rheology.

Considering figure 6 in chapter 4, there are quite a few factors which may con-

tribute to the differences between the time-averaged concentration plots of the ex-

periments and DEM simulations, and the theoretical breaking wave. Local shear-

rates, height dependence and finite grain sizes may all be factors in the difference.

However the complex link between rheology and segregation may also have an
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important role to play, and could potentially link all of these factors together. Cur-

rently, segregation theories tend to isolate individual factors such as the shear-rate,

height dependence and concentration dependence and examine their influence.

However, all the processes are likely to be inter-linked with the poly-disperse rhe-

ology. Thus a holistic approach to modelling segregation that is formulated around

the rheology might result in the most accurate theory.
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