
The University of Manchester Research

IPC Quick Start Guide

DOI:
10.3927/59340663

Document Version
Final published version

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Gajjar, P. (2017). IPC Quick Start Guide: IPC programming for Inspect-X. Nikon Metrology.
https://doi.org/10.3927/59340663

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:09. Jun. 2022

https://doi.org/10.3927/59340663
https://www.research.manchester.ac.uk/portal/en/publications/ipc-quick-start-guide(8471b0a7-6320-4baa-abc2-52d879d96b92).html
https://doi.org/10.3927/59340663

X-Tek X-ray and CT Inspection

IPC Quick Start Guide

IPC programming for Inspect-X

XTM0499-A1

Parmesh Gajjar, Henry Moseley X-ray Imaging Facility,
The University of Manchester

 IPC Quick Start Guide XTM0499-A1 i

Legal information
Original text copyright © Manchester University. This version copyright © Nikon Metrology.

All Rights Reserved.

This publication or parts thereof may not be reproduced in any form, by any method, for any purpose.

Company names, logos and product names are registered trademarks or trademarks of their
respective owners. Nikon Metrology N.V. or any of its group companies make no claim to third-party
trademarks.

The use of Nikon Metrology products, services and materials is subject to the Nikon Metrology
General Sales Terms and Conditions.

About this manual

This manual applies to the software type and version given on the front cover. It contains the
ORIGINAL Instructions for the safe use of this software. Nikon Metrology reserves the right to revise
and improve its products as it sees fit. This publication describes the state of this product at the time of
publication, and may not reflect the product at all times in the future.

Liability for calibration

Nikon Metrology will only accept liability for re-calibration if carried out in our own factory, and for the
verification process at the customer's site carried out by Nikon Metrology staff. We also accept liability
if the re-calibration or verification process is carried out by the customer if these processes are
explicitly agreed between the customer and Nikon Metrology. We will not accept liability if the
customer performs the re-calibration, or takes over responsibility for the verification process from
Nikon Metrology without prior authorisation, even if the recommended Nikon Metrology process is
followed.

Author information

Parmesh Gajjar,
The Henry Moseley X-ray Imaging Facility, The University of Manchester, Oxford Road, Manchester
M13 9PL. Email: parmesh.gajjar@alumni.manchester.ac.uk.

Manufacturer's contact details

Nikon Metrology Tring (X-Tek Systems Ltd),
Tring Business Centre, Icknield Way, Tring, Hertfordshire HP23 4JX. United Kingdom.

Tel. +44 1442 828700 Fax: +44 1442 828118

Website: http://www.nikonmetrology.com

Registered in England No. 01981536, VAT No. GB433 079 460

Sources of additional information

Contact service.nm-tring@nikon.com to:

• Get technical support (customers and distributors)

• Request quotations and order service parts

Current application software, drivers and manuals can be downloaded from:

http://extranet.nikonmetrology.com/

Access is restricted and a user account is required. Send an application for an account to
service.nm-tring@nikon.com.

Documentation feedback, suggestions for new or missing content or other comments can be sent to:
EngDoc.NM-Derby@nikon.com.

mailto:parmesh.gajjar@alumni.manchester.ac.uk
mailto:service.nm-tring@nikon.com
http://extranet.nikonmetrology.com/
mailto:service.nm-tring@nikon.com
mailto:EngDoc.NM-Derby@nikon.com

ii XTM0499-A1 IPC Quick Start Guide

 IPC Quick Start Guide XTM0499-A1 iii

Contents

1 Introduction 1

1.1 About this guide ... 1
1.2 Prerequisites .. 2
1.3 Getting started with C# .. 2
1.4 Acknowledging this work ... 2
1.5 Disclaimer .. 2
1.6 Important information ... 2

2 Setting Up 3

3 Tutorial 1: Writing your first IPC program - Switching X-rays on and off 5

3.1 Creating and setting up the Visual Studio project ... 5
3.2 The front-end user form and back-end code ...10
3.3 An overview of the code ..14
3.4 Channel connections ...17

3.4.1 Specifying the channels to switch on ...17
3.4.2 Opening the channels and attaching event handlers ..17
3.4.3 Detaching event handlers ..18
3.4.4 Linking channel connections to the user form ...18

3.5 Defining callback functions ..20
3.5.1 Heartbeat callback functions ...20
3.5.2 All other callback functions ..21

3.6 X-ray routine ..21
3.7 Initialising a new thread ...22
3.8 Finalising the user interface ...22
3.9 Running the application ...24
3.10 Troubleshooting tutorial 1 ..24

3.10.1 General troubleshooting ..24
3.10.2 Debugging ...24
3.10.3 A known bug in Inspect-X 5.1 with the X-ray Entire Status event25
3.10.4 Further errors ...26
3.10.5 Sample answer for tutorial 1 ..26

4 Tutorial 2: Moving the manipulator 27

4.1 Set up folders, solution and project ...27
4.2 Establish channel connections and callback functions ..27
4.3 Understanding manipulator move events ..27
4.4 Manipulator rotate application ...28
4.5 Sample answer ..29
4.6 Extensions ...29

5 Tutorial 3: Acquiring an image 31

5.1 Set up folders, solution and project ...31
5.2 Establish channel connections and identify appropriate events31
5.3 Image-processing routine ..31
5.4 Sample answer ..32
5.5 Extensions ...32

6 IPC - Expanding the potential of Nikon X-ray CT systems 33

6.1 Time-lapse imaging ...33

iv XTM0499-A1 IPC Quick Start Guide

6.2 Batch 3D scans ..33
6.3 Integration with 3rd party software ..34
6.4 Integration with 3rd party hardware ...34
6.5 Limitless potential...! ..34

7 Appendix: Sample code 35

7.1 Tutorial 1: UserForm.cs ...35
7.2 Tutorial 2: UserForm.cs ...42
7.3 Tutorial 3: UserForm.cs ...48

 IPC Quick Start Guide XTM0499-A1 1

1 Introduction

1.1 About this guide

The Nikon Inspect-X software used for controlling Nikon X-ray Computed Tomography (CT) systems
allows users to perform a wide variety of tasks, including inspections, 2D and 3D CT scans and batch
scheduling. Whilst the Inspect-X software fulfils the requirements of the majority of users, there may,
however, be cases where users want to use their X-ray CT system to do something that cannot
(easily) be done with Inspect-X. For example, users may wish to sequentially acquire and manipulate
radiographs, perform CT scans at certain predetermined times or allow communication between the
X-ray CT system and an external module or experimental rig.

One of the lesser known features within the Nikon Inspect-X software is that it allows users to control
and manipulate their Nikon X-ray CT system from a custom-built application through Inter Process
Communication (IPC). Inspect-X exposes a number of interfaces which we can access by
programming using the Microsoft .NET platform. Basic operations can be accessed, for example
switching X-rays on, moving the manipulator and acquiring images from the detector, as well as higher
level operations such as performing a CT scan and allowing users to develop highly complex and
customised applications.

The IPC interface replaces the Visual Basic for Applications (VBA) programming that was available in
older versions of Inspect-X (Versions 2.2 and older). All versions of Inspect-X from version 3 onwards
use the IPC interface. The new IPC interface provides a much greater potential for creating custom
applications for both industrial and academic environments; however, initially getting started with IPC
can be confusing and overwhelming.

The aim of this Quick Start Guide is to help you set up and start programming using IPC by writing
simple applications:

• A walk-through tutorial is provided in Tutorial 1: Writing your first IPC program - Switching
X-rays on and off (on page 5) for a simple program to switch X-rays on and off. This also
explains some basics of the IPC communications.

• Two further tutorial tasks can be found in Tutorial 2: Moving the manipulator (on page 27) and
Tutorial 3: Acquiring an image (on page 31), which will help bring familiarity with controlling the
manipulator and image-processing channels.

• Sample code is provided in Appendix: Sample code (on page 35).

This Quick Start Guide is not exhaustive, and there is a lot which is not covered. For instance, we
might want to develop complex applications with complex user interfaces, created through the
Designer. There are many online tutorials and books for this, and the Quick Start Guide only uses
basic features of form design. The Quick Start Guide concentrates more on explaining the basics of
IPC communication with Inspect-X, and it is hoped that these sections will provide sufficient
experience of the IPC interface to allow you to develop your own custom applications.

Note: This Quick Start Guide was written using Inspect-X version 5.1.4 and Visual Studio 2012
Professional. Other versions may look slightly different.

2 XTM0499-A1 IPC Quick Start Guide

Introduction

1.2 Prerequisites

1. A working Nikon X-ray CT system with Inspect-X software (version 4 or later) installed.

2. Microsoft Visual Studio 2010 (or later) with Microsoft Visual C# compilers.

3. Basic previous programming experience.

1.3 Getting started with C#

If you have some prior experience in programming, then you should be able to successfully follow the
tutorials in this guide to build some simple IPC applications in C# that perform basic operations with
the X-ray CT system. If you wish to learn more about C#, then an online tutorial can be found at
https://www.tutorialspoint.com/csharp/index.htm.

1.4 Acknowledging this work

I hope this Guide helps you get to grips with the basics of IPC programming, helping you create
custom research and industrial applications. If you can, I would be grateful if you can cite this work as:

Gajjar, P. (2017), ‘IPC Quick Start Guide’, Technical report produced by The University of Manchester
and Nikon Metrology; Contact address: Nikon Metrology, Tring, HP23 4JX, UK.
DOI: 10.3927/59340663

1.5 Disclaimer

The use of the IPC Programming Interface is taken solely at the discretion of you and your company
together with your Nikon point of contact.

The author of this Quick Start Guide takes no responsibility for any business losses, including without
limitation loss of or damage to profits, income, revenue, use, production, anticipated savings,
business, contracts, commercial opportunities or goodwill that arises from using IPC Programming or
following the material in this Guide.

1.6 Important information

It is illegal (against the Ionising Radiations Regulations, 1999) to write code which automatically
switches X-rays on without any user interaction. Your application must include an 'OK/Cancel' button
to control the generation of X-rays. This means that if the X-rays switch off because an interlock has
been broken, they cannot be restarted automatically by the IPC code. If an interlock has not been
broken, then a user may switch the X-rays back on again using an 'OK' button.

https://www.tutorialspoint.com/csharp/index.htm

 IPC Quick Start Guide XTM0499-A1 3

2 Setting Up
Microsoft Visual Studio should be installed on the acquisition computer. The .NET programming in this
Quick Start Guide will be done in Visual C#, so ensure that these options are selected on installation
and first start up.

Figure 2-1: Visual Studio start-up screen

It is possible to check whether Visual C# is installed by navigating to Help > About Microsoft Visual
Studio and checking the list of installed products.

Figure 2-2: Checking whether Visual C# is installed in Visual Studio

The next step is to copy the sample IPC programs to our documents directory (or another folder of our
choice). This leaves the originals intact, in case the client-contract interfaces are erroneously damaged
when programming.

• Navigate to <OS Drive>\ProgramData\Nikon Metrology

Note: It may be necessary to show hidden files and folders to locate the ProgramData folder.

4 XTM0499-A1 IPC Quick Start Guide

Setting Up

Figure 2-3: Locating the IPC Examples folder

• Copy the entire “IPC Examples” folder to a destination folder of your choice (for example My
Documents, namely Libraries\Documents).

• Navigate to the new “IPC Examples” just created (C:\User\User1\Documents\IPC Examples), and
open the “Programs” folder.

This should contain five folders named “IpcContract”, “IpcContractClientInterface”, “IpcDemo”,
“IPCTemplate” and “IpcUtil”.

Figure 2-4: The contents of the IPC Examples folder

The first three folders contain code that governs the communication between Inspect-X and the
custom application.

The “IpcDemo” folder contains a sample working IPC application that performs a simple circular
CT scan. Whilst this sample application may initially appear quite daunting, it should hopefully be
more understandable after working through this Quick Start Guide.

Finally, the “IPCTemplate” folder contains a template for developing new applications. We will
base our new applications on this template by copying the template folder for each new
application.

 IPC Quick Start Guide XTM0499-A1 5

3 Tutorial 1: Writing your first IPC program -
Switching X-rays on and off

This tutorial is the IPC equivalent of a “Hello World” program in basic programming courses, which will
give familiarity with different function calls in IPC, and yields a program that switches X-rays on, waits
for five seconds after X-rays have stabilised, then switches X-rays off again.

Creating and setting up the Visual Studio project (on page 5) and The front-end user form and
back-end code (on page 10) set up the Visual Studio project. The renaming allows each new
application to contain appropriate titles, and although it may take a short amount of time in the first few
instances, experience will allow you to rename everything very quickly.

An overview of the code (on page 14) provides an overview of the code and explains how the IPC
interfaces work.

Channel connections (on page 17) through to Running the application (on page 24) constructs our
first application in small segments.

If you have problems, refer to Troubleshooting (on page 24).

3.1 Creating and setting up the Visual Studio project

The simplest way to create new IPC applications is to use the “IPCTemplate” as a starting point, since
a large amount of the complex code dealing with the communication with Inspect-X is already
included.

• Create a copy of the “IPCTemplate” folder and rename it to “Tutorial1_XraysOnOff”.

Figure 3-1: Creating the “Tutorial1_XraysOnOff” folder

• Open the folder, which will contain a folder named “IPCTemplate” and a Microsoft Visual Studio
Solution.

Rename the folder again to “Tutorial1_XraysOnOff”, but do not rename the Microsoft Visual Studio
Solution.

6 XTM0499-A1 IPC Quick Start Guide

Tutorial 1: Writing your first IPC program - Switching X-rays on and off

Figure 3-2: Rename the folder but not the Microsoft Visual Studio Solution

• Double-click the Microsoft Visual Studio Solution to open it in Visual Studio, ignoring the following
warning:

Figure 3-3: Ignore the above warning that arises when loading the project. This will be corrected shortly.

The warning arises because we renamed one of the folders, and we will correct this shortly. You
should be presented with a screen as follows:

Figure 3-4: Initial project screen in Visual Studio

 IPC Quick Start Guide XTM0499-A1 7

 Tutorial 1: Writing your first IPC program - Switching X-rays on and off

There are a few small ‘fiddly' things that we will set up and rename from with Visual Studio:

• Firstly, find “Solution ‘IPCTemplate (4 Projects)” at the top of the Solution Explorer (usually on the
right-hand edge of the screen).

• Right click on this (or press F2), and rename it to “Tutorial1_XraysOnOff”.

Figure 3-5: Rename the entire Project Solution

• To correct the error when loading the solution, find the “IPCTemplate” project (next to a blue
rectangular box containing an exclamation mark) and select it. It will have “unavailable” written
next to it.

In the Properties pane (usually below the Solution Explorer), find “File path”.

Figure 3-6: Find the File path property for the IPCTemplate in the Properties pane

8 XTM0499-A1 IPC Quick Start Guide

Tutorial 1: Writing your first IPC program - Switching X-rays on and off

Click the “File path” and then click the ellipsis (…) on the right-hand side.

Figure 3-7: Clicking on the file path shows the ellipsis to locate the project file

This will bring up a dialog box in which there is one folder showing, namely
“Tutorial1_XraysOnOff”.

Figure 3-8: The first dialog should contain one folder called “Tutorial1_XraysOnOff”

Enter this folder, and select the Visual C# Project File called “IPCTemplate”.

Figure 3-9: Select the Visual C# Project File called “IPCTemplate”

Then right-click on the IPCTemplate project in the Solution Explorer (saying unavailable next to it),
and click Reload Project.

The unavailable should now disappear, and the blue box should be replaced by a C#.

 IPC Quick Start Guide XTM0499-A1 9

 Tutorial 1: Writing your first IPC program - Switching X-rays on and off

• Rename this IPCTemplate project (by right-clicking or pressing F2) to “Tutorial1_XraysOnOff”.

Figure 3-10: Rename the IPCTemplate project to “Tutorial1_XraysOnOff”

• Open more contents of the “Tutorial1_XraysOnOff” project by double-clicking on it in the Solution
Explorer, and then double-click on Properties.

Figure 3-11: The properties of the “Tutorial1_XraysOnOff” project

10 XTM0499-A1 IPC Quick Start Guide

Tutorial 1: Writing your first IPC program - Switching X-rays on and off

Change both the Assembly name and Default namespace to “Tutorial1_XraysOnOff”. Click the
Assembly Information button, and change the title to “XT IPC Tutorial 1: Switching X-rays on
and off”.

Figure 3-12: Changing the Assembly Information

Click OK on the dialog box, then CTRL-S on the keyboard to save, and close the tab.

Finally, the default startup project for the entire solution must be chosen to be our
Tutorial1_XraysOnOff project.

• Select the “Solution ‘IPCTemplate (5 Projects)” at the top of the Solution Explorer, right-click and
select Properties.

• In the list, next to Single startup project, select Tutorial1_XraysOnOff.

Figure 3-13: Changing the Startup project

• Click OK to finish.

3.2 The front-end user form and back-end code

The application consists of the front-end User Form, which is the Graphical User Interface (GUI) that
the final user interacts with. Behind all of this is the back-end C# code where we specify what we want
the application to do. We will change the names of the form and change the namespaces in the code
in preparation for creating our application.

 IPC Quick Start Guide XTM0499-A1 11

 Tutorial 1: Writing your first IPC program - Switching X-rays on and off

• Navigate to the “Tutorial1_XraysOnOff” project in the Solution Explorer, and click the horizontal
arrow to reveal its components. At the bottom will be “TemplateForm.cs”.

Figure 3-14: Locating TemplateForm.cs

To begin with, rename this to “UserForm.cs”. Upon renaming the form, the Solution Explorer will
reveal three further components nested within “UserForm.cs”. The bottom component will still
carry the name “TemplateForm”; this cannot be renamed in the usual manner, and we will rename
it shortly.

• Double-clicking the UserForm.cs will bring up the Designer for the form.

Figure 3-15: The UserForm Designer

12 XTM0499-A1 IPC Quick Start Guide

Tutorial 1: Writing your first IPC program - Switching X-rays on and off

This is where we will create buttons, trackbars, menus, and so on, that the user can interact with.

The properties for each of the items on the form can be modified in the Properties pane. For
example, when the entire form is selected, the Name can be changed from “TemplateForm” to
“UserForm”.

Figure 3-16: Changing the Form name to UserForm

Similarly, the Text property can be changed to “Tutorial 1- X-rays on and off”. Note that this
changes the title at the top of the form.

• Click the Start button on the top menu to build the form, and launch a debug version of the
application.

At this stage, the form should compile successfully, and a blank form should appear on the
screen.

Figure 3-17: The debug application

 IPC Quick Start Guide XTM0499-A1 13

 Tutorial 1: Writing your first IPC program - Switching X-rays on and off

• After closing the debug application, the back-end code can be revealed by pressing F7, and you
can return to the Designer by pressing SHIFT+F7.

Figure 3-18: The back-end code behind the UserForm

• One final renaming task remains. At the top of the code, below the references is a line marked
namespace IPCTemplate. Change “IPCTemplate” to “Tutorial1_XraysOnOff”.

Upon doing so, a small red box appears at the end of the new name. Hovering over this brings up
the option of a menu for auto-renaming of all instances of the IPCTemplate. Click to access the
menu, and choose the first option, Rename ‘IPCTemplate’ to ‘Tutorial1_XraysOnOff’.

Figure 3-19: Changing the Namespace

All instances within the entire solution automatically update - we can see this by the red lines
under InitialiseComponent(); disappearing.

We have now completed setting up our project, and are now ready to understand more about
mechanics of the IPC code.

14 XTM0499-A1 IPC Quick Start Guide

Tutorial 1: Writing your first IPC program - Switching X-rays on and off

3.3 An overview of the code

Before we change the mechanics of the code to construct our application, it will be useful to overview
the existing template code to understand the mechanics of the IPC interface.

The Nikon X-ray CT machine is controlled directly by the Inspect-X software on the acquisition
computer. Inspect-X then communicates with our custom application through eight different
communication channels, with each channel corresponding to a different aspect of the CT machine.
This is illustrated in the following diagram:

Figure 3-20: A sketch showing how communication occurs between the X-ray CT machine and the software
running acquisition computer, with the client application communicating with Inspect-X, which communicates with
the X-ray CT system

Communication along each channel is specific to that part of the X-ray CT system. For example, the
X-rays channel allows communication with the X-ray subsystem and the Image-Processing channel
allows communication with the Image Processing subsystem. As can be seen in the diagram, the
Inspect-X software acts as the intermediary between the custom application and the X-ray CT system,
and so Inspect-X is required to be running for our custom application to work.

Let us take a closer look at the X-ray channel to understand more about the communication:

Figure 3-21: A sketch showing how communication occurs along the X-ray channel

 IPC Quick Start Guide XTM0499-A1 15

 Tutorial 1: Writing your first IPC program - Switching X-rays on and off

Once the channel is open, the custom application can send commands to Inspect-X, for example
instructing X-rays to be switched on, or instructing the demand voltage to be set to a certain level. The
custom application can also demand statuses from Inspect-X, for example it could request the actual
current voltage on the X-ray system, and Inspect-X would immediately provide this information.

In general, communication is asynchronous: once a command is sent to Inspect-X, say to switch
X-rays on, Inspect-X does not provide any feedback and our code will move onto the next line without
knowing whether the command has been implemented or not. This is a significant difference to
anyone familiar with the former VBA programming module, where if X-rays were switched on, then
Inspect-X would feedback with the generation status and our code would wait for this status to be
received before moving on. The asynchronous nature provides far greater flexibility to create complex
multi-threaded application that perform many tasks simultaneously.

Although instantaneous feedback is not provided, Inspect-X is able to provide notifications of important
events using the C# event handling mechanism. For example, when the entire X-ray status changes,
the mEventSubscriptionInspectXStatus event is raised, and a function named

EventHandlerXRayEntireStatus is called. These events with associated event-handlers and

callback functions allow the user to create their own feedback loops. The events for a selected number
communication channels are listed the following table:

Table 3-1: List of events for the application, X-rays, manipulator and image-processing channels

Channel Event Description

Application mEventSubscriptionHeartbeat Heartbeat status from
Application channel

mEventSubscriptionInspectXStatus Status of Inspect-X

mEventSubscriptionInspectXAlarms Alarms raised by Inspect-X

X-rays mEventSubscriptionHeartbeat Heartbeat status from X-rays

mEventSubscriptionEntireStatus Status of X-rays

mEventSubscriptionAutoConditionUpdate Progress update on
auto-condition

Manipulator mEventSubscriptionHeartbeat Heartbeat status from
Manipulator

mEventSubscriptionManipulatorMove Manipulator move events

mEventSubscriptionDoorStateChanged Change in door status

mEventSubscriptionAxisPositionChanged Change in subscription axis
position

Image-Processing mEventSubscriptionHeartbeat Heartbeat status from Image-
Processing

mEventSubscriptionImageProcessing Image-Processing events

Further details and a complete list of events and event handlers for all of the channels can be found in
the Inspect-X IPC Programming Manual.

16 XTM0499-A1 IPC Quick Start Guide

Tutorial 1: Writing your first IPC program - Switching X-rays on and off

We can identify different parts of the code with each part of this communication process. Scrolling
down, the remaining code should appear like the figure below. If it appears that there is more code
showing, then any regions encased with #region and #endregion commands can be collapsed.

Conversely, any region (shown with a grey box around it) can be expanded to reveal the code within it.

Figure 3-22: An overview of the remaining template form code

We can see that the namespace Tutorial1_XraysOnOff, contains a public class UserForm. At

the top, there is a region called “Standard IPC Variables”, followed by a function called public
UserForm(). This is followed by three further regions called “Channel connections”, “Heartbeat from

host” and “STATUS FROM HOST”. Each region contains skeleton code which we will modify and
supplement to create our application.

The public UserForm() contains eight lines of code, which decide which communication channels

are switched on:

mChannels.AccessApplication = true;

mChannels.AccessXray = true;

mChannels.AccessManipulator = true;

mChannels.AccessImageProcessing = true;

mChannels.AccessInspection = true;

mChannels.AccessInspection2D = true;

mChannels.AccessCT3DScan = true;

mChannels.AccessCT2DScan = true;

To switch a communication channel off, we can simply change true to false. The “Channel

connections” region contains functions which open and close communication along the specified
channels. We can also decide on which event notifications we add to each channel. Whenever an
event notification is raised, we can decide how we wish to react and process them. The functions
called every time a “Heartbeat” event notification is received are defined in the “Heartbeat from host”
region, and code for all of the other event notifications can be found in the “STATUS FROM HOST”
region.

Let us examine each of these in further detail as we develop our application to turn X-rays on and off.

 IPC Quick Start Guide XTM0499-A1 17

 Tutorial 1: Writing your first IPC program - Switching X-rays on and off

3.4 Channel connections

3.4.1 Specifying the channels to switch on

In the template form, the eight lines within the UserForm function shows that all the channels are

switched on. For this tutorial, we will use only the Application channel and the X-rays channel. The
Application channel is needed to open all communication with Inspect-X, that is, for signals on the
X-ray, Manipulator and Imaging Processing channels, and so on, to occur. This application will also be
using X-rays, so we need the X-ray channel.

• Leave the flags for the Application and X-ray channels as true, and set the flags for the other six
channels to false.

3.4.2 Opening the channels and attaching event handlers

The Channel connections region defines opening and closing of the communication channels. If the

region has been collapsed, it will say Channel connections with a grey box around it.

Double-clicking this will expand the region, revealing two functions called:

private Channels.EConnectionState ChannelsAttach()

private bool ChannelsDetach()

Firstly, the ChannelsAttach function opens the channels specified earlier opened with the line:

Channels.EConnectionState State = mChannels.Connect();

The two functions also let us attach/detach event handlers to the appropriate channels for the events
that we wish to monitor. The template displays all of the events for each of the channels, with the
events grouped in ’if’ clauses for the communication channel they correspond to. The code will only

be activated, however, for the channels set to true in Specifying the channels to switch on (on

page 17), and so it is perfectly safe to delete code for any channel that is switched off.

Examine the ChannelsAttach function, and consider the ‘if’ clause for the Application channel:

if (mChannels.Application != null)

{

 mChannels.Application.mEventSubscriptionHeartbeat.Event

 += new EventHandler

 <CommunicationsChannel_Application.EventArgsHeartbeat>

 (EventHandlerHeartbeatApp);

 mChannels.Application.mEventSubscriptionInspectXStatus.Event

 += new EventHandler

 <CommunicationsChannel_Application.EventArgsInspectXStatus>

 (EventHandlerInspectXStatus);

 mChannels.Application.mEventSubscriptionInspectXAlarms.Event

 += new EventHandler

 <CommunicationsChannel_Application.EventArgsInspectXAlarms>

 (EventHandlerInspectXAlarms);

}

18 XTM0499-A1 IPC Quick Start Guide

Tutorial 1: Writing your first IPC program - Switching X-rays on and off

The code begins by querying whether mChannels.Application it set to true. If it is, then event

handlers are attached (through the +=) for the all three events within the Application channel (see An
overview of the code (on page 14)), namely for the Application Heartbeat, for the Inspect-X

status and for Inspect-X alarms. For example, the mEventSubscriptionInspectXAlarms event has

an event-handler called EventArgsInspectXAlarms. When Inspect-X notifies our application of one

of these events, the event handler will call the functions in parentheses, which are appropriately known
as callback functions. For example, the EventHandlerInspectXAlarms callback function will be

executed by the EventArgsInspectXAlarms event handler whenever Inspect-X raises an Inspect-X

Alarm in the Application communication channel.

• For this simple first program that switches X-rays on and off, we will only be interested in the
following events:

mChannels.Application.mEventSubscriptionHeartbeat.Event

mChannels.Xray.mEventSubscriptionHeartbeat.Event

mChannels.Xray.mEventSubscriptionEntireStatus.Event

Code for all of the other events can be deleted from the ChannelsAttach functions. In particular,

all of the ’if’ clauses for the channels apart from mChannels.Application and mChannels.Xray

can be deleted, and the any event within these two channels that is not in the list above can be
deleted.

For more information or simple tutorials on events and event handlers in C#, please see the further
resources in Getting started with C# (on page 2).

3.4.3 Detaching event handlers

Similarly, the ChannelsDetach function removes event handlers from the communication channels

when we have finished. Only those event handlers which have been attached in Opening the
channels and attaching event handlers (on page 17) need to be removed.

• The code for the ChannelsDetach function can be simplified by deleting those event handlers we

are not interested in, leaving only code for mEventSubscriptionHeartbeat,

mEventSubscriptionHeartbeat and mEventSubscriptionEntireStatus.

Notice that in this ChannelsDetach function, the event handlers are detached using the -= command,

rather than the += used to attach the event handlers in Opening the channels and attaching event

handlers (on page 17).

The code can be checked against the sample code for tutorial 1 (on page 35).

3.4.4 Linking channel connections to the user form

The final part of establishing the channel connections it to invoke the ChannelsAttach function when

the form is loaded and the ChannelsDetach function when the form is closed.

1. Firstly, find the region at the top of the code called “Standard IPC Variables”. Immediately after
this region (that is, after #endregion Standard IPC Variables), create a new region called

Application Variables through the following code:

#region Application Variables

#endregion Application Variables

We will add variables to this section as we develop our application. To begin with, we will initialise
a variable that will keep track of the connection status of our application.

2. Type the following code within the new region:

/// <summary> Status of the application </summary>

private Channels.EConnectionState mApplicationState;

This creates a new variable that will hold the application status.

 IPC Quick Start Guide XTM0499-A1 19

 Tutorial 1: Writing your first IPC program - Switching X-rays on and off

3. Next, open the Designer for the form by pressing SHIFT+F7. Select the entire form, and navigate
to the Properties pane. The Events associated with the form can be selected by pressing the
button with a lightning strike in it.

Figure 3-23: Events associated with Form

Find “Load” and double click on it to create a new form event associated with loading the form.
This code will be executed every time the form is loaded. This will take us back to the code-editor,
where a new function will have been created:

private void UserForm_Load(object sender, EventArgs e)

{

}

Within this function, place the following code to attach the channels, whilst catching any
exceptions that may be raised:

try

{

 // Attach channels

 mApplicationState = ChannelsAttach();

}

catch (Exception ex) { AppLog.LogException(ex); }

4. Similarly, create a new event for “FormClosing”, and place within it the following code:

try

{

 // Detach channels

 ChannelsDetach();

}

catch (Exception ex) { AppLog.LogException(ex); }

5. To keep the entire code tidy, place these form functions within a new region called “Form
Functions”.

20 XTM0499-A1 IPC Quick Start Guide

Tutorial 1: Writing your first IPC program - Switching X-rays on and off

3.5 Defining callback functions

Now that we have initialised the channel connections, we must define how we want our application to
process signals that it receives from Inspect-X about the X-ray CT system. This is done by defining the
callback functions, which we invoked in the circular parentheses when attaching and detaching our
channels above. The asynchronous nature means that we have the flexibility to react immediately
within our program when an event is raised or simply store the state in a variable, which we can look
up later. For example, if an Alarm event is raised, then we may want to immediately close our
application, but if the X-rays status event is raised, then we may store the state in a variable which we
can look up later.

After simplifying our code in Specifying the channels to switch on (on page 17) to remove the code
for events we are not interested in, we should be left with code that handles the following three events:

mChannels.Application.mEventSubscriptionHeartbeat.Event

mChannels.Xray.mEventSubscriptionHeartbeat.Event

mChannels.Xray.mEventSubscriptionEntireStatus.Event

which have the associated callback functions given in parentheses:

EventHandlerHeartbeatApp

EventHandlerHeartbeatXRay

EventHandlerXRayEntireStatus

3.5.1 Heartbeat callback functions

The first two of these callback functions respond to the ‘heartbeat’ that each of the channels produces
to indicate the status of the communication channels. The “Heartbeat from Host” region contains
callback functions for each of the eight communication channels.

• At this stage, the heartbeat callback functions for the six channels we are not using can be
discarded.

We are left with the EventHandlerHeartbeatApp and EventHandlerHeartbeatXRay functions. The

code for the former is shown below:

void EventHandlerHeartbeatApp(object aSender, CommunicationsChannel_Application.EventArgsHeartbeat e)

{

 try

 {

 if (mChannels == null || mChannels.Application == null)

 return;

 if (this.InvokeRequired)

 this.BeginInvoke((MethodInvoker)delegate

 { EventHandlerHeartbeatApp(aSender, e); });

 else

 {

 //your code goes here....

 }

 }

 catch (ObjectDisposedException) { } // ignore

 catch (Exception ex) { AppLog.LogException(ex); }

}

 IPC Quick Start Guide XTM0499-A1 21

 Tutorial 1: Writing your first IPC program - Switching X-rays on and off

The code which we want to be executed when a heartbeat signal is received is placed where it says
// your code goes here. For example, we may have a heartbeat animation on the User Interface

form or a text box containing the number of seconds that the client has been connected. We will not
place any code here in this tutorial, but the IPCDemo contains an example of a heartbeat animation.

3.5.2 All other callback functions

All the other callback functions are handled in the “STATUS from host” region. Opening the region will
show 8 further regions for each communication channel. Each region contains skeleton code for each
of the possible non-heartbeat event callback functions on that channel.

• Our sample tutorial program only has one callback function left, namely

EventHandlerXRayEntireStatus

which corresponds to the event:

mChannels.Xray.mEventSubscriptionEntireStatus.Event

To keep the code succinct, all the other callback functions can be deleted.

Examining the one remaining callback function, we can see from the name that this event is fired
every time Inspect-X sends a new signal with an update on the Entire Status of the X-ray system.
Each of the different status messages that could be received are listed as different cases in the switch
clause; for each case, we have space to insert our own code when that particular status is received.

Let us create a new variable called XRaysStable, that will act as a flag that turns to true when a

success status is received. Later on, we can check whether X-rays have stabilised by checking the
value of this variable.

1. Firstly, create a private Boolean variable in the Application Variables region called

mXraysStable and initialise it to false.

/// <summary> Flag for X-ray stability </summary>

private Boolean mXraysStable = false;

2. Next, within the status callback function, find the case for “Success”. Under this, set the
mXraysStable flag to be true. The flag will remain false until the X-rays are both on and stable,

when it will be set to true.

3. Within the status callback function, set the mXraysStable flag to be false under the “SwitchedOff”

case. This will reset the flag when X-rays are turned off.

A good debugging tip is to Debug.Print the statuses received in the callback functions to see what

signals are actually coming from Inspect-X, and when. See Debugging (on page 24) for more details.

Now we are ready to write our custom routine for switching X-rays on, wait for stability and then wait
five seconds before turning off.

3.6 X-ray routine

Let us construct a short routine to switch the X-rays on, wait for stability and then wait a further five
seconds before turning the X-rays off again.

Rather than copying and pasting code, it is recommended to type the code and use IntelliSense to
understand how different variables in IPC are nested.

• After the last region in the code (which should now be the Form Functions region), create a new
region called X-ray functions. Within this, create a new private void function called

XrayRoutine that has no arguments.

private void XrayRoutine()

{

}

22 XTM0499-A1 IPC Quick Start Guide

Tutorial 1: Writing your first IPC program - Switching X-rays on and off

• The first thing we will do is check that the channels we attached correctly; else none of the
subsequent operations will work.

// If ApplicationState is not connected then immediately exit the routine

if (mApplicationState != Channels.EConnectionState.Connected)

 return;

• Next we set the mXraysStable flag to false. This is so that the flag is correctly set to true only

after the X-rays have been turned on in this execution.

// Set mXraysStable flag to false

mXraysStable = false;

• It is then time to turn the X-rays on:

// Turn the X-rays on.

mChannels.Xray.XRays.GenerationDemand(true);

• We will then wait in a loop until we receive a signal that the X-rays have stabilised. We check
whether the X-rays flag is false, and if so we wait for 5 milliseconds and reassess. Once the

X-rays flag turns to true, this would loop would end.

// Wait until X-rays have stabilised

while (!mXraysStable)

 Thread.Sleep(5);

• Once the X-rays have stabilised, we then wait for five seconds (5000 milliseconds).

// Once stable, wait for a further 5 seconds

Thread.Sleep(5000);

• Finally, we turn the X-rays off, and wait until they have turned off by checking that the
mXraysStable returns to false.

// Turn the X-rays off

mChannels.Xray.XRays.GenerationDemand(false);

// Wait until X-rays have turned off

while (mXraysStable)

 Thread.Sleep(5);

3.7 Initialising a new thread

In order for the communication from Inspect-X to be handled in a parallel manner, at the same time as
our own routine is running, we must execute our routine on a new thread.

• To set up for this, create a new private Thread variable in the Application Variables region and

initialise it to null:

/// <summary> Thread for X-ray Routine </summary>

private Thread mXrayRoutineThread = null;

3.8 Finalising the user interface

In order for our user to execute our X-ray routine, we need a button on the User Interface for them to
click Start.

 IPC Quick Start Guide XTM0499-A1 23

 Tutorial 1: Writing your first IPC program - Switching X-rays on and off

• Go to the Form Designer (SHIFT+F7) and create a button from the toolbox on the left.

Figure 3-24: Creating a button on the UserForm

After resizing it to an appropriate size, go to the Properties pane. Change the Name to “btn_Start”
and the Text to “Start”.

• Double-clicking on the button will generate a stub function btn_Start_Click for code that is

executed when the button is clicked.

private void btn_Start_Click(object sender, EventArgs e)

{

}

• We wish to run our X-ray routine, so within the btn_Start_Click function, we assign our function

to the thread we created, and then start it.

// Assign the XrayRoutine to the mXrayRoutineThread

mXrayRoutineThread = new Thread(XrayRoutine);

// Start the thread

mXrayRoutineThread.Start();

• The btn_Start_Click routine can be moved to the “Form Functions” region to keep similar

functions together.

One final safety measure remains. Whilst our XrayRoutine is running, we do not want the user to be

able to press the Start button again (and thus initialise another thread which runs the XrayRoutine).

To prevent this, we disable the Start button immediately when the XrayRoutine is started, and enable

it again when the Routine finishes.

As we have initialised a new thread for XrayRoutine, we are on a different thread to the User Form

functions, and so the Invoke property is needed to change Form properties from within the
XrayRoutine function.

• Go to the XrayRoutine function, and at the top of the function will be three lines that check

whether the channels have been attached correctly.

After this, place the following code that disables the Start button:

24 XTM0499-A1 IPC Quick Start Guide

Tutorial 1: Writing your first IPC program - Switching X-rays on and off

// For safety, disable the Start button

this.Invoke((MethodInvoker)delegate { btn_Start.Enabled = false; });

• To re-enable the Start button at the end, insert the following code immediately before the end of
the XrayRoutine:

// Re-enable the Start button

this.Invoke((MethodInvoker)delegate { btn_Start.Enabled = true; });

We are now ready to test our simple application.

3.9 Running the application

Before testing our application, remember that Inspect-X is needed for any communication with the X-
ray system to occur (see An overview of the code (on page 14)).

First, ensure that the Inspect-X is running and that there are no X-ray alarms. Then, clicking Run
below the menu bar in Visual Studio should successfully build the application.

Clicking the Start button in our application will switch the X-rays on, stay on for five seconds after
stability, and then automatically switch the X-rays off again.

3.10 Troubleshooting tutorial 1

3.10.1 General troubleshooting

If the program fails to build then check that each of the steps in the tutorial have been followed
correctly.

If the program builds and runs successfully, but the X-rays do not come on, then ensure try manually
switching X-rays on and off from Inspect-X. If this does not work, then it is likely there are alarms on
the X-ray CT system which can be corrected. If it still does not work despite there being no alarms,
then the problem is between Inspect-X and our application, and we need to check the code as below.

3.10.2 Debugging

A useful way to find run-time problems in our code is to use Debug.Print statements at important

parts of the code. We will place debug statements at key points in our Tutorial 1 application.

• To check whether channels are attached correctly, find the UserForm_Load function. With the try

loop, place the following code at the end:

if (mApplicationState == Channels.EConnectionState.Connected)

 Debug.Print(DateTime.Now.ToString("dd/MM/yyyy H:mm:ss.fff") + " : Connected to Inspect-X");

else

 Debug.Print(DateTime.Now.ToString("dd/MM/yyyy H:mm:ss.fff") + " : Problem in connecting to
 Inspect-X");

• Similarly, to check whether channels detach correctly, place the following code at the end of the
try loop in the TestForm_FormClosing:

Debug.Print(DateTime.Now.ToString("dd/MM/yyyy H:mm:ss.fff") + " : Disconnected from Inspect-X");

• To see what X-ray Entire Status events are being raised by Inspect-X, go to the
EventHandlerXRayEntireStatus function (which is found in the ‘STATUS FROM HOST’ region,

nested under ’XRay’). Immediately above the switch loop, where it says // Your code goes
here..., place the following line:

Debug.Print(DateTime.Now.ToString("dd/MM/yyyy H:mm:ss.fff") + " :
 e.EntireStatus.XRaysStatus.GenerationStatus.State=" +
 e.EntireStatus.XRaysStatus.GenerationStatus.State.ToString());

 IPC Quick Start Guide XTM0499-A1 25

 Tutorial 1: Writing your first IPC program - Switching X-rays on and off

• To check the value of mXraysStable, place the following code after the end of the switch loop:

Debug.Print(DateTime.Now.ToString("dd/MM/yyyy H:mm:ss.fff") + " : mXraysStable=" +
 mXraysStable.ToString());

The results from these debug statements will be printed to the Output window (or Immediate window
depending on Visual Studio settings), which can be displayed whilst the Debug application is running
by going to Debug > Windows > Output (or Immediate).

Figure 3-25: Debug output in the Output window

3.10.3 A known bug in Inspect-X 5.1 with the X-ray Entire Status event

A known bug in the current version of Inspect-X (5.1) is that the “Success” X-ray Entire Status event is
sometimes not raised. Instead, a second “WaitingForStability” event is raised. The mXraysStable is

thus never set to true, and so our tutorial program hangs within the XrayRoutine waiting for stability.

In this case, the Output log may look similar to the following:

18/01/2017 17:24:51.613 : Connected to Inspect-X

18/01/2017 17:25:33.905 :e.EntireStatus.XRaysStatus.GenerationStatus.State=SwitchedOff

18/01/2017 17:25:33.906 : mXraysStable=False

18/01/2017 17:25:36.940 :e.EntireStatus.XRaysStatus.GenerationStatus.State=WaitingForStability

18/01/2017 17:25:36.941 : mXraysStable=False

18/01/2017 17:25:38.763 :e.EntireStatus.XRaysStatus.GenerationStatus.State=WaitingForStability

18/01/2017 17:25:38.764 : mXraysStable=False

Shortly following the erroneous second “WaitingForStability” event, Inspect-X does in fact set the X-ray
Entire Status to “Success”, but does not raise an event for it.

The simply way to rectify this bug is by manually updating the X-ray Entire Status if the
“WaitingForStability” event is raised twice.

• Close the debug application, and stop the debugger.

• Add the following code to Application Variables section to declare the variables that will be used
for the manual status update:

/// <summary> Entire Xray Status (for bug correction) summary>

private IpcContract.XRay.EntireStatus mXrayEntireStatus;

/// <summary> Generation status summary>

private IpcContract.XRay.GenerationStatus.EXRayGenerationState mXrayGenerationStatus;

/// <summary> Stability event counter summary>

private int mXraysStabilityCounter = 0;

• Go to the EventHandlerXRayEntireStatus function, and find the switch loop. After the

WaitingForStability case, where it says // Your code goes here..., place the following

code to manually update the X-ray Entire Status:

26 XTM0499-A1 IPC Quick Start Guide

Tutorial 1: Writing your first IPC program - Switching X-rays on and off

// Increment stability counter;

mXraysStabilityCounter++;

// If stability counter is greater than 1 then must manually check update X-ray Entire status

if (mXraysStabilityCounter > 1)

{

 // Manual loop to update X-ray Entire Status until "Success"

 Debug.Print(DateTime.Now.ToString("dd/MM/yyyy H:mm:ss.fff") + " : Manually checking for
 stability");

 do

 {

 // First sleep for a small amount of time to allow status updates

 Thread.Sleep(100);

 // Then get a updated X-ray Entire Status

 mXrayEntireStatus = mChannels.Xray.GetXRayEntireStatus();

 // Find generation part of Entire Status

 mXrayGenerationStatus = mXrayEntireStatus.XRaysStatus. GenerationStatus.State;

 Debug.Print(DateTime.Now.ToString("dd/MM/yyyy H:mm:ss.fff") + " :
 mXrayGenerationStatus=" + mXrayGenerationStatus.ToString());

 }

 while (mXrayGenerationStatus != IpcContract.XRay.
 GenerationStatus.EXRayGenerationState.Success);

 Debug.Print(DateTime.Now.ToString("dd/MM/yyyy H:mm:ss.fff") + " : Manually found stable X-
 rays- Proceed");

 // Once "Success" obtained then set mXraysStable flag to true

 mXraysStable = true;

 // Reset stability counter

 mXraysStabilityCounter = 0;

}

3.10.4 Further errors

If you still have trouble compiling, building and running this first tutorial program, then you are advised
to liaise with your Nikon point of contact.

3.10.5 Sample answer for tutorial 1

A sample answer for the tutorial 1, including debugging and a fix for the known bug above, can be
found in Sample code - tutorial 1 (on page 35) at the end of this Quick Start Guide.

 IPC Quick Start Guide XTM0499-A1 27

4 Tutorial 2: Moving the manipulator
In this second tutorial, we will extend our knowledge and experience of the IPC system by writing a
program to control the manipulator.

4.1 Set up folders, solution and project

• Following Creating and setting up the Visual Studio project (on page 5) and The front-end
user form and back-end code (on page 10), create a new copy of the IPCTemplate and rename
it.

• Rename the entire solution and IPCTemplate Project, changing the Project and Solution
properties as necessary. Ensure that the entire solution builds successfully.

• Rename the TemplateForm.cs file, and appropriately set the form properties. Within the form
code, change the Namespace.

• Test to ensure that the debug application compiles and builds successfully.

4.2 Establish channel connections and callback
functions

This section is based on Channel connections (on page 17) and Defining callback functions (on
page 20) in the previous tutorial (on page 5).

• As in Specifying the channels to switch on (on page 17), set the initial flags to allow access to
the Application and Manipulator channels only.

• The only events we are interested in are the following:

mChannels.Application.mEventSubscriptionHeartbeat.Event

mChannels.Manipulator.mEventSubscriptionHeartbeat.Event

mChannels.Manipulator.mEventSubscriptionManipulatorMove.Event

All other events can be removed from the ChannelsAttach and ChannelsDetach functions.

• Finally, we need to link our channels to our user form. Following Linking channel connections to
the user form (on page 18), create an mApplicationState variable, and then assign the

ChannelsAttach and ChannelsDetach functions to the “Load” and “FormClosing” events of the

main user form.

• Remove any code for callback functions associated with events that we are not interested in.

4.3 Understanding manipulator move events

Before we construct our application to move the manipulator, it is worthwhile to understand how
different Manipulator Move Events are raised. We can do this using Debug.Print of Debugging (on

page 24).

• Go to the EventHandlerManipulatorMoveEvent callback function that is called whenever a

Manipulator Move Event is raised. This can be found in the “STATUS FROM HOST” region,
nested under “Manipulator”. Immediately above switch (e.MoveEvent), insert the following

debugging statement:

Debug.Print(DateTime.Now.ToString("dd/MM/yyyy H:mm:ss.fff") + " : e.MoveEvent=" +
 e.MoveEvent.ToString());

• Compile and build the debug application. Ensure Inspect-X is running and run the debug
application. Open the Output/Intermediate window in Visual Studio to monitor the debug output.

• Move the manipulator in different ways from Inspect-X (for example, homing, joystick control,
position go), and monitor the debug output. Try to understand which events are raised, and when.

28 XTM0499-A1 IPC Quick Start Guide

Tutorial 2: Moving the manipulator

• Consider what happens when the demanded position of the manipulator is the same as its current
position. What events are raised?

For systems with a rotate axis, what happens if the axis is asked to move to a position that is
factor of 360 degrees away?

4.4 Manipulator rotate application

We will now use this knowledge of Manipulator Move events to develop a simple useful application.
We want a button on the user interface that causes the manipulator to rotate from its current position
by a set amount. The user can specify the amount through a numeric up-down box that is also present
on the user interface.

• Create a variable in the ‘Application Variables’ section that represents the Rotate axis of the
manipulator.

/// <summary> Define the rotate axis (constant) summary>

const IpcContract.Manipulator.EAxisName mRotateAxis = IpcContract.Manipulator.EAxisName.Rotate;

• Decide on the appropriate event(s) that will signal when the manipulator has started and stopped
moving. Create appropriately named Boolean flags for these in the ‘Application Variables’ section.

Set the flag(s) to be true at appropriate place(s) in the EventHandlerManipulatorMoveEvent

callback function when the relevant event(s) are raised.

• Create an appropriately named private decimal variable in the ‘Application Variables’ section to

store the rotate amount, with an initial value of 10.

• On the Designer for the UserForm, add a numeric up-down box from the Toolbox. Resize it, give it
an appropriate name and set its initial value to also be 10. Add a label beside the box to tell the
user what variable it is for.

• Double-clicking the numeric up-down box creates a function that is called every time the user
updates the value in the box. Within this function, set the value of our global rotate amount to the
value of the numeric up-down box. The line of code will be similar to below, but differing due to
whichever names we choose.

mRotateAmount = NumericUpDown_RotateAmount.Value;

• Create a button on the Designer for the user interface, and change its properties as appropriate.
Pressing this button will initiate our move routine.

• Construct a private void ManipulatorMove() function that will run when the button on the

user interface is pressed. The routine should first check to see whether the application has
connected to Inspect-X. In addition to initialising any necessary variables, the routine should then
look up the current manipulator position of the rotate axis, set a new target position for the rotate
axis, instruct the rotate axis to move and wait until the manipulator has finished moving.

The functions that are available in each channels can be found by going to
mChannels.<ChannelName>, and looking at its member functions. For example, in the manipulator

channel under the Axis member, we can find the Position function to look up the position of a

particular axis:

mChannels.Manipulator.Axis.Position(mRotateAxis);

• Create a new thread variable. Add code to run the ManipulatorMove function on a new thread

when the button is clicked.

• Add appropriate lines to the ManipulatorMove function that disables everything on the user

interface after it has been clicked, and re-enables it once the our Manipulator Move routine has
finished.

• Compile, build and test the debug application to ensure that it works correctly.

 IPC Quick Start Guide XTM0499-A1 29

 Tutorial 2: Moving the manipulator

4.5 Sample answer

A sample answer for this tutorial can be found at the end of this Guide in Sample code - tutorial 2 (on
page 42).

4.6 Extensions

1. Modify the program to move the X axis by a specified amount instead the rotate axis. What other
precautions need to be taken with the X or Y axis?

2. Add an extra numeric up-down button to the user interface so that travel distances for two
separate axes can be set. Modify the ManipulatorMove routine so that both axes move together.

3. Add an extra button to the user interface that will home all of the axes.

30 XTM0499-A1 IPC Quick Start Guide

Tutorial 2: Moving the manipulator

 IPC Quick Start Guide XTM0499-A1 31

5 Tutorial 3: Acquiring an image
Continuing our exploration of the IPC interfaces, we will write a simple application that will acquire an
image from the detector using Inspect-X.

5.1 Set up folders, solution and project

• Following Creating and setting up the Visual Studio project (on page 5), The front-end user
form and back-end code (on page 10) and Set up folders, solution and project (on page 27) ,
create a new solution from a copy of the IPCTemplate. Rename properties as appropriate.

• Test to ensure that the debug application compiles and builds successfully.

5.2 Establish channel connections and identify
appropriate events

• Set the initial flags to allow access to the Application and Image Processing channels only.

• Remove all of the events associated with the other channels from the ChannelsAttach and

ChannelsDetach functions.

• Create an mApplicationState variable, and then assign the ChannelsAttach and

ChannelsDetach functions to the “Load” and “FormClosing” events of the main user form.

• Place Debug.Print statements within the one non-heartbeat callback function. Build, compile and

run the debug application.

• From within Inspect-X, perform a variety of Image Processing tasks and use the debug output to
observe which events are raised.

• Decide whether there are any unnecessary event-handlers and remove these from the
ChannelsAttach and ChannelsDetach functions.

5.3 Image-processing routine

Let us now create a routine that will average a user-defined number of images, and save the averaged
image to disk. The user should be able to specify the number of images to average along with the file
name.

• Create Boolean flags for the important events, and set them to be true when the appropriate
events are raised.

• Create an integer variable with an initial value of 1 for the number of images to average. Add a
numeric up-down box to the user form in the designer, and update the value of the integer variable
when the numeric up-down box is changed.

• Create a string constant (const string) that stores the directory in which the final images will be

saved. Ensure that the literal string value that this constant is given represents the path of a
directory that exists.

• Create a private string variable that will store the filename, and give it an initial value. Add a

text box to the user form, and update the value of the filename variable when the text box text is
changed.

• Construct a private void ImageAverageSave() function for averaging and saving the image.

The function should first check that the appropriate channels are connected. Next, it should create
a variable for the actual image file path, concatenating the directory, filename and image
extension. The routine should then average the user-defined number of images and wait until
averaging has completed. The image should be saved, waiting until the save has completed
successfully.

• Create a new thread variable. On the Designer for the user interface, insert a button that will run
the ImageAverageSave routine on a new thread when it is clicked.

32 XTM0499-A1 IPC Quick Start Guide

Tutorial 3: Acquiring an image

• Add code to the ImageAverageSave routine to disable and enable the button where appropriate.

5.4 Sample answer

A sample answer for this tutorial can be found at the end of this Guide in Sample code - tutorial 3 (on
page 48).

5.5 Extensions

1. Modify the program to switch into the live imaging mode and capture the live image rather than
take an average of images.

2. Correct the image before saving. For example, one method of correcting the raw image would be
to subtract the background black field, divide by the background white field before finally
multiplying by a target value, say 60,000.

 IPC Quick Start Guide XTM0499-A1 33

6 IPC - Expanding the potential of Nikon X-ray
CT systems

This Quick Start Guide has introduced you to the basics of IPC programming provided in Inspect-X,
and has shown how to write very simple applications on the X-ray, manipulator and image processing
sub-systems. These can be combined to build up more complex applications, that could do almost
anything that you could envisage. Let us briefly discuss a few more examples, out of the unlimited
scope that is possible.

6.1 Time-lapse imaging

The imaging acquisition and save routines studied in Tutorial 3: Acquiring an image (on page 31)
could be combined in a loop with Thread.Sleep() command to create a routine that acquires

radiographs in a time-lapsed manner.

6.2 Batch 3D scans

This Guide has utilised the application, X-ray, manipulator and image processing communication
channels, but there are a number of other channels, which provide other useful functionality. For
instance, the CT 3D Scan communication channel allows us to start a 3D CT scan from a saved
profile.

// Get profile list

List<string> profiles = mChannels.CT3DScan.ProfileList();

if (profiles.Count > 0)

{

 // Sample Info

 System.Collections.Generic.Dictionary<string, Object> sampleInfo =

 new System.Collections.Generic.Dictionary<string, Object>();

 sampleInfo.Add("Dataset name", "Test");

 // Response variable

 Inspect_X_Definitions.CTResponse response;

 Debug.Print("profiles[0]=" + profiles[0].ToString());

 // Start run

 response = mChannels.CT3DScan.Run(profiles[0], sampleInfo);

}

Several different profiles could be predefined, for example high and low resolutions scans of the same
sample, with the above code adapted to perform a batch scan of each profile in turn. The scans can
also be automatically reconstructed, with Inspect-X returning status updates on the progress of the
reconstruction.

34 XTM0499-A1 IPC Quick Start Guide

IPC - Expanding the potential of Nikon X-ray CT systems

6.3 Integration with 3rd party software

One of the advantages of developing programs through IPC is the ability to integrate and interact with
other software separate to Inspect-X, for example VG-Studio or Microsoft Word. After acquiring and
reconstructing the data, VG-Studio could be used to analyse whether measurements are within certain
tolerances: Are there an acceptable number of defects? Are the walls of the sample within a given
tolerated thickness? These results could then be neatly presented in a report using Microsoft Word. In
this way, a completely automated acquisition, reconstruction, analysis and reporting pipeline could be
created.

6.4 Integration with 3rd party hardware

Similarly, IPC can be used to integrate with hardware that is separate from the Nikon X-ray CT
system. For example, the alarm callback functions could be linked to control room software, or the
results reported from automated reconstruction and analysis could be linked directly to the production
line, with production paused if tolerances fall below a given value.

6.5 Limitless potential...!

The IPC interface thus expands and extends the potential functionality of the Nikon X-ray CT system,
allowing us to perform and automate many complicated tasks that are not possible simply through the
Inspect-X software. The full range of IPC commands can be found in the IPC Programming Manual
which accompanies the Inspect-X installation.

This Guide has simple scratched the surface of what is possible, but the possibilities and scope for
using IPC are endless. In short, it allows the Nikon X-ray CT system to be used in an unlimited
manner!

 IPC Quick Start Guide XTM0499-A1 35

7 Appendix: Sample code

7.1 Tutorial 1: UserForm.cs

1 using System;

 using System.Collections.Generic;

3 using System.ComponentModel;

 using System.Data;

5 using System.Drawing;

 //using System.Linq;

7 using System.Text;

 using System.Windows.Forms;

9

11 using IpcContractClientInterface;

 using AppLog = IpcUtil.Logging;

13 using System.Globalization;

 using System.Threading;

15 using System.Diagnostics;

 using System.IO;

17

 namespace Tutorial1_XraysOnOff

19 {

 public partial class UserForm : Form

21 {

 /// <summary>Are we in design modesummary>

23 protected bool mDesignMode { get; private set; }

25 #region Standard IPC Variables

27 /// <summary>This ensures consistent read and write culturesummary>

 private NumberFormatInfo mNFI = new CultureInfo("en-GB", true).NumberFormat; // Force UN English culture

29

 /// <summary>Collection of all IPC channels, this object always exists.summary>

31 private Channels mChannels = new Channels();

33 #endregion Standard IPC Variables

35 #region Application Variables

37 /// <summary> Status of the application summary>

 private Channels.EConnectionState mApplicationState;

39

 /// <summary> Flag for X-ray stability summary>

41 private Boolean mXraysStable = false;

43 /// <summary> Thread for X-ray Routine summary>

 private Thread mXrayRoutineThread = null;

45

 /// <summary> Entire Xray Status (for bug correction) summary>

47 private IpcContract.XRay.EntireStatus mXrayEntireStatus;

49 /// <summary> Generation status summary>

 private IpcContract.XRay.GenerationStatus.EXRayGenerationState mXrayGenerationStatus;

51

 /// <summary> Stability event counter summary>

53 private int mXraysStabilityCounter = 0;

55 #endregion Application Variables

57 public UserForm()

 {

36 XTM0499-A1 IPC Quick Start Guide

Appendix: Sample code

59 try

 {

61 mDesignMode = (LicenseManager.CurrentContext.UsageMode == LicenseUsageMode.Designtime);

 InitializeComponent();

63 if (!mDesignMode)

 {

65 // Tell normal logging who the parent window is.

 AppLog.SetParentWindow = this;

67 AppLog.TraceInfo = true;

 AppLog.TraceDebug = true;

69

 mChannels = new Channels();

71 // Enable the channels that will be controlled by this application.

 // For the generic IPC client this is all of them!

73 // This just sets flags, it does not actually open the channels.

 mChannels.AccessApplication = true;

75 mChannels.AccessXray = true;

 mChannels.AccessManipulator = false;

77 mChannels.AccessImageProcessing = false;

 mChannels.AccessInspection = false;

79 mChannels.AccessInspection2D = false;

 mChannels.AccessCT3DScan = false;

81 mChannels.AccessCT2DScan = false;

 }

83 }

 catch (Exception ex) { AppLog.LogException(ex); }

85 }

87 #region Channel connections

89 /// <summary>Attach to channel and connect any event handlerssummary>

 /// <returns>Connection statusreturns>

91 private Channels.EConnectionState ChannelsAttach()

 {

93 try

 {

95 if (mChannels != null)

 {

97 Channels.EConnectionState State = mChannels.Connect();

 if (State == Channels.EConnectionState.Connected) // Open channels

99 {

 // Attach event handlers (as required)

101

 if (mChannels.Application != null)

103 {

 mChannels.Application.mEventSubscriptionHeartbeat.Event +=

105 new EventHandler <CommunicationsChannel_Application.EventArgsHeartbeat
>(EventHandlerHeartbeatApp);

 }

107

 if (mChannels.Xray != null)

109 {

 mChannels.Xray.mEventSubscriptionHeartbeat.Event +=

111 new
EventHandler<CommunicationsChannel_XRay.EventArgsHeartbeat>(EventHandlerHeartbeatX
Ray);

 mChannels.Xray.mEventSubscriptionEntireStatus.Event +=

113 new EventHandler <CommunicationsChannel_XRay.EventArgsXRayEntireStatus>
(EventHandlerXRayEntireStatus);

 }

115

 }

117 return State;

 }

119 }

 catch (Exception ex) { AppLog.LogException(ex); }

 IPC Quick Start Guide XTM0499-A1 37

 Appendix: Sample code

121 return Channels.EConnectionState.Error;

 }

123

 /// <summary>Detach channel and disconnect any event handlerssummary>

125 /// <returns>true if OKreturns>

 private bool ChannelsDetach()

127 {

 try

129 {

 if (mChannels != null)

131 {

 // Detach event handlers

133

 if (mChannels.Application != null)

135 {

 mChannels.Application.mEventSubscriptionHeartbeat.Event -=

137 new EventHandler <CommunicationsChannel_Application.EventArgsHeartbeat>
 (EventHandlerHeartbeatApp);

 }

139

 if (mChannels.Xray != null)

141 {

 mChannels.Xray.mEventSubscriptionHeartbeat.Event -=

143 new EventHandler <CommunicationsChannel_XRay.EventArgsHeartbeat>
 (EventHandlerHeartbeatXRay);

 mChannels.Xray.mEventSubscriptionEntireStatus.Event -=

145 new EventHandler <CommunicationsChannel_XRay.EventArgsXRayEntireStatus>
 (EventHandlerXRayEntireStatus);

 }

147

 Thread.Sleep(100); // A breather for events to finish!

149 return mChannels.Disconnect(); // Close channels

 }

151 }

 catch (Exception ex) { AppLog.LogException(ex); }

153 return false;

 }

155

 #endregion Channel connections

157

 #region Heartbeat from host

159

 void EventHandlerHeartbeatApp(object aSender, CommunicationsChannel_Application.EventArgsHeartbeat e)

161 {

 try

163 {

 if (mChannels == null || mChannels.Application == null)

165 return;

 if (this.InvokeRequired)

167 this.BeginInvoke((MethodInvoker)delegate { EventHandlerHeartbeatApp(aSender, e); });

 else

169 {

 //your code goes here....

171 }

 }

173 catch (ObjectDisposedException) { } // ignore

 catch (Exception ex) { AppLog.LogException(ex); }

175 }

177 void EventHandlerHeartbeatXRay(object aSender, CommunicationsChannel_XRay.EventArgsHeartbeat e)

 {

179 try

 {

181 if (mChannels == null || mChannels.Xray == null)

 return;

183 if (this.InvokeRequired)

38 XTM0499-A1 IPC Quick Start Guide

Appendix: Sample code

 this.BeginInvoke((MethodInvoker)delegate { EventHandlerHeartbeatXRay(aSender, e); });

185 else

 {

187 //your code goes here....

 }

189 }

 catch (ObjectDisposedException) { } // ignore

191 catch (Exception ex) { AppLog.LogException(ex); }

 }

193

 void EventHandlerHeartbeatMan(object aSender, CommunicationsChannel_Manipulator.EventArgsHeartbeat e)

195 {

 try

197 {

 if (mChannels == null || mChannels.Manipulator == null)

199 return;

 if (this.InvokeRequired)

201 this.BeginInvoke((MethodInvoker)delegate { EventHandlerHeartbeatMan(aSender, e); });

 else

203 {

 //your code goes here....

205 }

 }

207 catch (ObjectDisposedException) { } // ignore

 catch (Exception ex) { AppLog.LogException(ex); }

209 }

211 void EventHandlerHeartbeatIP(object aSender, CommunicationsChannel_ImageProcessing.EventArgsHeartbeat e)

 {

213 try

 {

215 if (mChannels == null || mChannels.ImageProcessing == null)

 return;

217 if (this.InvokeRequired)

 this.BeginInvoke((MethodInvoker)delegate { EventHandlerHeartbeatIP(aSender, e); });

219 else

 {

221 //your code goes here...

 }

223 }

 catch (ObjectDisposedException) { } // ignore

225 catch (Exception ex) { AppLog.LogException(ex); }

 }

227

 void EventHandlerHeartbeatInspection(object aSender, CommunicationsChannel_Inspection.EventArgsHeartbeat
e)

229 {

 try

231 {

 if (mChannels == null || mChannels.Inspection == null)

233 return;

 if (this.InvokeRequired)

235 this.BeginInvoke((MethodInvoker)delegate { EventHandlerHeartbeatInspection(aSender, e); });

 else

237 {

 //your code goes here....

239 }

 }

241 catch (ObjectDisposedException) { } // ignore

 catch (Exception ex) { AppLog.LogException(ex); }

243 }

245 void EventHandlerHeartbeatInspection2D(object aSender,
 CommunicationsChannel_Inspection2D.EventArgsHeartbeat e)

 {

247 try

 IPC Quick Start Guide XTM0499-A1 39

 Appendix: Sample code

 {

249 if (mChannels == null || mChannels.Inspection2D == null)

 return;

251 if (this.InvokeRequired)

 this.BeginInvoke((MethodInvoker)delegate { EventHandlerHeartbeatInspection2D(aSender, e); });

253 else

 {

255 //your code goes here....

 }

257 }

 catch (ObjectDisposedException) { } // ignore

259 catch (Exception ex) { AppLog.LogException(ex); }

 }

261

 void EventHandlerHeartbeatCT3DScan(object aSender, CommunicationsChannel_CT3DScan.EventArgsHeartbeat e)

263 {

 try

265 {

 if (mChannels == null || mChannels.CT3DScan == null)

267 return;

 if (this.InvokeRequired)

269 this.BeginInvoke((MethodInvoker)delegate { EventHandlerHeartbeatCT3DScan(aSender, e); });

 else

271 {

 //your code goes here....

273 }

 }

275 catch (ObjectDisposedException) { } // ignore

 catch (Exception ex) { AppLog.LogException(ex); }

277 }

279 void EventHandlerHeartbeatCT2DScan(object aSender, CommunicationsChannel_CT2DScan.EventArgsHeartbeat e)

 {

281 try

 {

283 if (mChannels == null || mChannels.CT2DScan == null)

 return;

285 if (this.InvokeRequired)

 this.BeginInvoke((MethodInvoker)delegate { EventHandlerHeartbeatCT2DScan(aSender, e); });

287 else

 {

289 //your code goes here....

 }

291 }

 catch (ObjectDisposedException) { } // ignore

293 catch (Exception ex) { AppLog.LogException(ex); }

 }

295

 #endregion Heartbeat from host

297

 #region STATUS FROM HOST

299

 #region XRay

301

 void EventHandlerXRayEntireStatus(object aSender, CommunicationsChannel_XRay.EventArgsXRayEntireStatus e)

303 {

 try

305 {

 if (mChannels == null || mChannels.Xray == null)

307 return;

 if (this.InvokeRequired)

309 this.BeginInvoke((MethodInvoker)delegate { EventHandlerXRayEntireStatus(aSender, e); }); //
 Make it non blocking if called form this UI thread

 else

311 {

 if (e.EntireStatus != null)

40 XTM0499-A1 IPC Quick Start Guide

Appendix: Sample code

313 {

315 Debug.Print(DateTime.Now.ToString("dd/MM/yyyy H:mm:ss.fff") + " :
e.EntireStatus.XRaysStatus.GenerationStatus.State=" +
e.EntireStatus.XRaysStatus.GenerationStatus.State.ToString());

317 switch (e.EntireStatus.XRaysStatus.GenerationStatus.State)

 {

319 case IpcContract.XRay.GenerationStatus.EXRayGenerationState.Success:

 // Set mXraysStable Flag to true indicating stability has been reached

321 mXraysStable = true;

 break;

323 case IpcContract.XRay.GenerationStatus.EXRayGenerationState.WaitingForStability:

 // Increment stability counter;

325 mXraysStabilityCounter++;

327 // If stability counter is greater than 1 then must manually check update X-ray
 Entire status

 if (mXraysStabilityCounter > 1)

329 {

 // Manual loop to update X-ray Entire Status until "Success"

331

 Debug.Print(DateTime.Now.ToString("dd/MM/yyyy H:mm:ss.fff") + " : Manually
 checking for stability");

333

 do

335 {

 // First sleep for a small amount of time to allow status updates

337 Thread.Sleep(100);

 // Then get a updated X-ray Entire Status

339 mXrayEntireStatus = mChannels.Xray.GetXRayEntireStatus();

 // Find generation part of Entire Status

341 mXrayGenerationStatus =
mXrayEntireStatus.XRaysStatus.GenerationStatus.State;

343 Debug.Print(DateTime.Now.ToString("dd/MM/yyyy H:mm:ss.fff") + " :
mXrayGenerationStatus=" + mXrayGenerationStatus.ToString());

 }

345 while (mXrayGenerationStatus !=
IpcContract.XRay.GenerationStatus.EXRayGenerationState.Success);

347 Debug.Print(DateTime.Now.ToString("dd/MM/yyyy H:mm:ss.fff") + " : Manually
found stable X-rays- Proceed");

349 // Once "Success" obtained then set mXraysStable flag to true

 mXraysStable = true;

351

 // Reset stability counter

353 mXraysStabilityCounter = 0;

 }

355 break;

 case IpcContract.XRay.GenerationStatus.EXRayGenerationState.NoXRayController:

357 // Your code goes here...

 break;

359 case IpcContract.XRay.GenerationStatus.EXRayGenerationState.StabilityTimeout:

 // Your code goes here...

361 break;

 case IpcContract.XRay.GenerationStatus.EXRayGenerationState.StabilityXRays:

363 // Your code goes here...

 break;

365 case IpcContract.XRay.GenerationStatus.EXRayGenerationState.SwitchedOff:

 // Set reset flag when X-rays are turned off

367 mXraysStable = false;

 break;

369 }

 IPC Quick Start Guide XTM0499-A1 41

 Appendix: Sample code

371 Debug.Print(DateTime.Now.ToString("dd/MM/yyyy H:mm:ss.fff") + " : mXraysStable=" +
mXraysStable.ToString());

 }

373 }

 }

375 catch (Exception ex) { AppLog.LogException(ex); }

 }

377

379 #endregion

381 #endregion Status from host

383

 #region Form Functions

385

 private void UserForm_Load(object sender, EventArgs e)

387 {

 try

389 {

 // Attach channels

391 mApplicationState = ChannelsAttach();

393 if (mApplicationState == Channels.EConnectionState.Connected)

 Debug.Print(DateTime.Now.ToString("dd/MM/yyyy H:mm:ss.fff") + " : Connected to Inspect-X");

395 else

 Debug.Print(DateTime.Now.ToString("dd/MM/yyyy H:mm:ss.fff") + " : Problem in connecting to
 Inspect-X");

397 }

 catch (Exception ex) { AppLog.LogException(ex); }

399 }

401

403 private void UserForm_FormClosing(object sender, FormClosingEventArgs e)

 {

405 try

 {

407 // Detach channels

 ChannelsDetach();

409

 Debug.Print(DateTime.Now.ToString("dd/MM/yyyy H:mm:ss.fff") + " : Disconnected from Inspect-X");

411 }

 catch (Exception ex) { AppLog.LogException(ex); }

413 }

415 private void btn_Start_Click(object sender, EventArgs e)

 {

417 // Assign the XrayRoutine to the mXrayRoutineThread

 mXrayRoutineThread = new Thread(XrayRoutine);

419

 // Start the thread

421 mXrayRoutineThread.Start();

 }

423

 #endregion Form Functions

425

 #region X-ray functions

427

 private void XrayRoutine()

429 {

 // If ApplicationState is not connected then immediately exit the routine

431 if (mApplicationState != Channels.EConnectionState.Connected)

 return;

433

 // For safety, disable the Start button

42 XTM0499-A1 IPC Quick Start Guide

Appendix: Sample code

435 this.Invoke((MethodInvoker)delegate { btn_Start.Enabled = false; });

437 // Set mXraysStable flag to false

 mXraysStable = false;

439

 // Turn the X-rays on.

441 mChannels.Xray.XRays.GenerationDemand(true);

443 // Wait until X-rays have stabilised

 while (!mXraysStable)

445 Thread.Sleep(5);

447 // Once stable, wait for a further 5 seconds

 Thread.Sleep(5000);

449

 // Turn the X-rays off

451 mChannels.Xray.XRays.GenerationDemand(false);

453 // Wait until X-rays have turned off

 while (mXraysStable)

455 Thread.Sleep(5);

457 // Re-enable the Start button

 this.Invoke((MethodInvoker)delegate { btn_Start.Enabled = true; });

459 }

461 #endregion X-ray functions

463

465 }

 }

7.2 Tutorial 2: UserForm.cs

 using System;

2 using System.Collections.Generic;

 using System.ComponentModel;

4 using System.Data;

 using System.Drawing;

6 //using System.Linq;

 using System.Text;

8 using System.Windows.Forms;

10

 using IpcContractClientInterface;

12 using AppLog = IpcUtil.Logging;

 using System.Globalization;

14 using System.Threading;

 using System.Diagnostics;

16 using System.IO;

18 namespace Tutorial2_MovingManipulator

 {

20 public partial class UserForm : Form

 {

22 /// <summary>Are we in design modesummary>

 protected bool mDesignMode { get; private set; }

24

 #region Standard IPC Variables

26

 /// <summary>This ensures consistent read and write culturesummary>

28 private NumberFormatInfo mNFI = new CultureInfo("en-GB", true).NumberFormat; // Force UN English culture

 IPC Quick Start Guide XTM0499-A1 43

 Appendix: Sample code

30 /// <summary>Collection of all IPC channels, this object always exists.summary>

 private Channels mChannels = new Channels();

32

 #endregion Standard IPC Variables

34

 #region Application Variables

36

 /// <summary> Status of the application summary>

38 private Channels.EConnectionState mApplicationState;

40 /// <summary> Define the rotate axis (constant) summary>

 const IpcContract.Manipulator.EAxisName mRotateAxis = IpcContract.Manipulator.EAxisName.Rotate;

42

 /// <summary> Go signal sent flag summary>

44 private bool mManipulatorGoSignalSent = false;

 /// <summary> Go complete flag summary>

46 private bool mManipulatorGoComplete = false;

48 /// <summary> Rotate amount summary>

 private decimal mRotateAmount = 10;

50

 /// <summary> Manipulator thread variable summary>

52 private Thread mManipulatorThread = null;

54 #endregion Application Variables

56 public UserForm()

 {

58 try

 {

60 mDesignMode = (LicenseManager.CurrentContext.UsageMode == LicenseUsageMode.Designtime);

 InitializeComponent();

62 if (!mDesignMode)

 {

64 // Tell normal logging who the parent window is.

 AppLog.SetParentWindow = this;

66 AppLog.TraceInfo = true;

 AppLog.TraceDebug = true;

68

 mChannels = new Channels();

70 // Enable the channels that will be controlled by this application.

 // For the generic IPC client this is all of them!

72 // This just sets flags, it does not actually open the channels.

 mChannels.AccessApplication = true;

74 mChannels.AccessXray = false;

 mChannels.AccessManipulator = true;

76 mChannels.AccessImageProcessing = false;

 mChannels.AccessInspection = false;

78 mChannels.AccessInspection2D = false;

 mChannels.AccessCT3DScan = false;

80 mChannels.AccessCT2DScan = false;

 }

82 }

 catch (Exception ex) { AppLog.LogException(ex); }

84 }

86 #region Channel connections

88 /// <summary>Attach to channel and connect any event handlerssummary>

 /// <returns>Connection statusreturns>

90 private Channels.EConnectionState ChannelsAttach()

 {

92 try

 {

94 if (mChannels != null)

 {

44 XTM0499-A1 IPC Quick Start Guide

Appendix: Sample code

96 Channels.EConnectionState State = mChannels.Connect();

 if (State == Channels.EConnectionState.Connected) // Open channels

98 {

 // Attach event handlers (as required)

100

 if (mChannels.Application != null)

102 {

 mChannels.Application.mEventSubscriptionHeartbeat.Event +=

104 new EventHandler <CommunicationsChannel_Application.EventArgsHeartbeat>
 (EventHandlerHeartbeatApp);

 }

106

108 if (mChannels.Manipulator != null)

 {

110 mChannels.Manipulator.mEventSubscriptionHeartbeat.Event +=

 new EventHandler <CommunicationsChannel_Manipulator.EventArgsHeartbeat>
 (EventHandlerHeartbeatMan);

112 mChannels.Manipulator.mEventSubscriptionManipulatorMove.Event +=

 new EventHandler <CommunicationsChannel_Manipulator.EventArgsManipulatorMoveEvent>
 (EventHandlerManipulatorMoveEvent);

114 }

116 }

 return State;

118 }

 }

120 catch (Exception ex) { AppLog.LogException(ex); }

 return Channels.EConnectionState.Error;

122 }

124 /// <summary>Detach channel and disconnect any event handlerssummary>

 /// <returns>true if OKreturns>

126 private bool ChannelsDetach()

 {

128 try

 {

130 if (mChannels != null)

 {

132 // Detach event handlers

134 if (mChannels.Application != null)

 {

136 mChannels.Application.mEventSubscriptionHeartbeat.Event -=

 new EventHandler <CommunicationsChannel_Application.EventArgsHeartbeat>
 (EventHandlerHeartbeatApp);

138 }

140

 if (mChannels.Manipulator != null)

142 {

 mChannels.Manipulator.mEventSubscriptionHeartbeat.Event -=

144 new EventHandler <CommunicationsChannel_Manipulator.EventArgsHeartbeat>
 (EventHandlerHeartbeatMan);

 mChannels.Manipulator.mEventSubscriptionManipulatorMove.Event -=

146 new EventHandler <CommunicationsChannel_Manipulator.EventArgsManipulatorMoveEvent>
 (EventHandlerManipulatorMoveEvent);

 }

148

 Thread.Sleep(100); // A breather for events to finish!

150 return mChannels.Disconnect(); // Close channels

 }

152 }

 catch (Exception ex) { AppLog.LogException(ex); }

154 return false;

 }

156

 IPC Quick Start Guide XTM0499-A1 45

 Appendix: Sample code

 #endregion Channel connections

158

 #region Heartbeat from host

160

 void EventHandlerHeartbeatApp(object aSender, CommunicationsChannel_Application.EventArgsHeartbeat e)

162 {

 try

164 {

 if (mChannels == null || mChannels.Application == null)

166 return;

 if (this.InvokeRequired)

168 this.BeginInvoke((MethodInvoker)delegate { EventHandlerHeartbeatApp(aSender, e); });

 else

170 {

 //your code goes here....

172 }

 }

174 catch (ObjectDisposedException) { } // ignore

 catch (Exception ex) { AppLog.LogException(ex); }

176 }

178 void EventHandlerHeartbeatMan(object aSender, CommunicationsChannel_Manipulator.EventArgsHeartbeat e)

 {

180 try

 {

182 if (mChannels == null || mChannels.Manipulator == null)

 return;

184 if (this.InvokeRequired)

 this.BeginInvoke((MethodInvoker)delegate { EventHandlerHeartbeatMan(aSender, e); });

186 else

 {

188 //your code goes here....

 }

190 }

 catch (ObjectDisposedException) { } // ignore

192 catch (Exception ex) { AppLog.LogException(ex); }

 }

194

 #endregion Heartbeat from host

196

 #region STATUS FROM HOST

198

 #region Manipulator

200

 void EventHandlerManipulatorMoveEvent(object aSender,
 CommunicationsChannel_Manipulator.EventArgsManipulatorMoveEvent e)

202 {

 try

204 {

 if (mChannels == null || mChannels.Manipulator == null)

206 return;

 if (this.InvokeRequired)

208 this.BeginInvoke((MethodInvoker)delegate { EventHandlerManipulatorMoveEvent(aSender, e); }); //
 Make it non blocking if called form this UI thread

 else

210 {

 Debug.Print(DateTime.Now.ToString("dd/MM/yyyy H:mm:ss.fff") + " : e.MoveEvent=" +
 e.MoveEvent.ToString());

212

 switch (e.MoveEvent)

214 {

 case IpcContract.Manipulator.EMoveEvent.HomingStarted:

216 // Your code goes here...

 break;

218 case IpcContract.Manipulator.EMoveEvent.HomingCompleted:

 // Your code goes here...

46 XTM0499-A1 IPC Quick Start Guide

Appendix: Sample code

220 break;

 case IpcContract.Manipulator.EMoveEvent.ManipulatorStartedMoving:

222 // Your code goes here...

 break;

224 case IpcContract.Manipulator.EMoveEvent.ManipulatorStoppedMoving:

 // Your code goes here...

226 break;

 case IpcContract.Manipulator.EMoveEvent.FilamentChangePositionGoStarted:

228 // Your code goes here...

 break;

230 case IpcContract.Manipulator.EMoveEvent.GoCompleted:

 // Set mManipulatorGoComplete flag to be true

232 mManipulatorGoComplete = true;

 break;

234 case IpcContract.Manipulator.EMoveEvent.GoStarted:

 // Set mManipulatorGoSignalSent flag to be true

236 mManipulatorGoSignalSent = true;

 break;

238 case IpcContract.Manipulator.EMoveEvent.LoadPositionGoCompleted:

 // Your code goes here...

240 break;

 case IpcContract.Manipulator.EMoveEvent.LoadPositionGoStarted:

242 // Your code goes here...

 break;

244 case IpcContract.Manipulator.EMoveEvent.Error:

 // Your code goes here...

246 break;

 default:

248 break;

 }

250 }

 }

252 catch (Exception ex) { AppLog.LogException(ex); }

 }

254

256 #endregion

258

260 #endregion Status from host

262 #region User functions

264 private void UserForm_Load(object sender, EventArgs e)

 {

266 try

 {

268 // Attach channels

 mApplicationState = ChannelsAttach();

270

 if (mApplicationState == Channels.EConnectionState.Connected)

272 Debug.Print(DateTime.Now.ToString("dd/MM/yyyy H:mm:ss.fff") + " : Connected to Inspect-X");

 else

274 Debug.Print(DateTime.Now.ToString("dd/MM/yyyy H:mm:ss.fff") + " : Problem in connecting to
 Inspect-X");

 }

276 catch (Exception ex) { AppLog.LogException(ex); }

 }

278

280

 private void UserForm_FormClosing(object sender, FormClosingEventArgs e)

282 {

 try

284 {

 IPC Quick Start Guide XTM0499-A1 47

 Appendix: Sample code

 // Detach channels

286 ChannelsDetach();

288 Debug.Print(DateTime.Now.ToString("dd/MM/yyyy H:mm:ss.fff") + " : Disconnected from Inspect-X");

 }

290 catch (Exception ex) { AppLog.LogException(ex); }

 }

292

294 private void numericUpDown_RotateAmount_ValueChanged(object sender, EventArgs e)

 {

296 mRotateAmount = numericUpDown_RotateAmount.Value;

 }

298

300 private void btn_Start_Click(object sender, EventArgs e)

 {

302 // Initialise a new thread for Manipulator move to run on

 mManipulatorThread = new Thread(ManipulatorMove);

304 // Start the thread

 mManipulatorThread.Start();

306 }

308

 #endregion User functions

310

312 #region Manipulator routines

314 private void ManipulatorMove()

 {

316 // If ApplicationState is not connected then immediately exit the routine

 if (mApplicationState != Channels.EConnectionState.Connected)

318 return;

320 // For safety, disable the Start button

 this.Invoke((MethodInvoker)delegate

322 {

 btn_Start.Enabled = false;

324 lbl_RotateAmount.Enabled = false;

 numericUpDown_RotateAmount.Enabled = false;

326 });

328 // Variable for current manipulator position

 float aManipulatorCurrentPosition;

330

 // Variable for demanded manipulator position

332 float aManipulatorDemandedPosition;

334 // Set Movement flags to be false

 mManipulatorGoSignalSent = false;

336 mManipulatorGoComplete = false;

338 // Look up current position

 aManipulatorCurrentPosition = mChannels.Manipulator.Axis.Position(mRotateAxis);

340

 // Calculate new demanded position

342 aManipulatorDemandedPosition = aManipulatorCurrentPosition + (float)mRotateAmount;

344 // Set target position of rotate axis to be demanded position

 mChannels.Manipulator.Axis.Target(mRotateAxis, aManipulatorDemandedPosition);

346

 // Tell manipulator to move

348 mChannels.Manipulator.Axis.Go(mRotateAxis);

350 // while both movement flags are still not positive, then wait

48 XTM0499-A1 IPC Quick Start Guide

Appendix: Sample code

 while (!mManipulatorGoSignalSent || !mManipulatorGoComplete)

352 Thread.Sleep(10);

354 // Re-enable the Start button

 this.Invoke((MethodInvoker)delegate

356 {

 btn_Start.Enabled = true;

358 lbl_RotateAmount.Enabled = true;

 numericUpDown_RotateAmount.Enabled = true;

360 });

362 }

364 #endregion Manipulator routines

366

368

 }

370 }

7.3 Tutorial 3: UserForm.cs

 using System;

2 using System.Collections.Generic;

 using System.ComponentModel;

4 using System.Data;

 using System.Drawing;

6 //using System.Linq;

 using System.Text;

8 using System.Windows.Forms;

10

 using IpcContractClientInterface;

12 using AppLog = IpcUtil.Logging;

 using System.Globalization;

14 using System.Threading;

 using System.Diagnostics;

16 using System.IO;

18 namespace Tutorial3_AcquiringAnImage

 {

20 public partial class UserForm : Form

 {

22 /// <summary>Are we in design modesummary>

 protected bool mDesignMode { get; private set; }

24

 #region Standard IPC Variables

26

 /// <summary>This ensures consistent read and write culturesummary>

28 private NumberFormatInfo mNFI = new CultureInfo("en-GB", true).NumberFormat; // Force UN English culture

30 /// <summary>Collection of all IPC channels, this object always exists.summary>

 private Channels mChannels = new Channels();

32

 #endregion Standard IPC Variables

34

 #region Application Variables

36

 // Application connection status

38 private Channels.EConnectionState mApplicationState;

40 // Flag for Average Complete

 private Boolean mImageAverageComplete = false;

 IPC Quick Start Guide XTM0499-A1 49

 Appendix: Sample code

42

 // Flag for Image Save complete

44 private Boolean mImageSaveComplete = false;

46 // Number of images to average

 private int mNumberImagesToAverage = 1;

48

 // String constant for Directory

50 const string mDirectory = @"C:\Users\User\Pictures";

52 // String for filename

 private string mFilename = "untitled";

54

 // Thread for image average save routine

56 private Thread mThreadImageAverageSave = null;

58 #endregion Application Variables

60 public UserForm()

 {

62 try

 {

64 mDesignMode = (LicenseManager.CurrentContext.UsageMode == LicenseUsageMode.Designtime);

 InitializeComponent();

66 if (!mDesignMode)

 {

68 // Tell normal logging who the parent window is.

 AppLog.SetParentWindow = this;

70 AppLog.TraceInfo = true;

 AppLog.TraceDebug = true;

72

 mChannels = new Channels();

74 // Enable the channels that will be controlled by this application.

 // For the generic IPC client this is all of them!

76 // This just sets flags, it does not actually open the channels.

 mChannels.AccessApplication = true;

78 mChannels.AccessXray = false;

 mChannels.AccessManipulator = false;

80 mChannels.AccessImageProcessing = true;

 mChannels.AccessInspection = false;

82 mChannels.AccessInspection2D = false;

 mChannels.AccessCT3DScan = false;

84 mChannels.AccessCT2DScan = false;

 }

86 }

 catch (Exception ex) { AppLog.LogException(ex); }

88 }

90 #region Channel connections

92 /// <summary>Attach to channel and connect any event handlerssummary>

 /// <returns>Connection statusreturns>

94 private Channels.EConnectionState ChannelsAttach()

 {

96 try

 {

98 if (mChannels != null)

 {

100 Channels.EConnectionState State = mChannels.Connect();

 if (State == Channels.EConnectionState.Connected) // Open channels

102 {

 // Attach event handlers (as required)

104

 if (mChannels.Application != null)

106 {

 mChannels.Application.mEventSubscriptionHeartbeat.Event +=

50 XTM0499-A1 IPC Quick Start Guide

Appendix: Sample code

108 new EventHandler <CommunicationsChannel_Application.EventArgsHeartbeat>
 (EventHandlerHeartbeatApp);

 }

110

112 if (mChannels.ImageProcessing != null)

 {

114 mChannels.ImageProcessing.mEventSubscriptionHeartbeat.Event +=

 new EventHandler <CommunicationsChannel_ImageProcessing.EventArgsHeartbeat>
 (EventHandlerHeartbeatIP);

116 mChannels.ImageProcessing.mEventSubscriptionImageProcessing.Event +=

 new EventHandler <CommunicationsChannel_ImageProcessing.EventArgsIPEvent>
 (EventHandlerIPEvent);

118 }

120

 }

122 return State;

 }

124 }

 catch (Exception ex) { AppLog.LogException(ex); }

126 return Channels.EConnectionState.Error;

 }

128

 /// <summary>Detach channel and disconnect any event handlerssummary>

130 /// <returns>true if OKreturns>

 private bool ChannelsDetach()

132 {

 try

134 {

 if (mChannels != null)

136 {

 // Detach event handlers

138

 if (mChannels.Application != null)

140 {

 mChannels.Application.mEventSubscriptionHeartbeat.Event -=

142 new EventHandler <CommunicationsChannel_Application.EventArgsHeartbeat>
 (EventHandlerHeartbeatApp);

 }

144

 if (mChannels.ImageProcessing != null)

146 {

 mChannels.ImageProcessing.mEventSubscriptionHeartbeat.Event -=

148 new EventHandler <CommunicationsChannel_ImageProcessing.EventArgsHeartbeat>
 (EventHandlerHeartbeatIP);

 mChannels.ImageProcessing.mEventSubscriptionImageProcessing.Event -=

150 new EventHandler <CommunicationsChannel_ImageProcessing.EventArgsIPEvent>
 (EventHandlerIPEvent);

 }

152

154 Thread.Sleep(100); // A breather for events to finish!

 return mChannels.Disconnect(); // Close channels

156 }

 }

158 catch (Exception ex) { AppLog.LogException(ex); }

 return false;

160 }

162 #endregion Channel connections

164 #region Heartbeat from host

166 void EventHandlerHeartbeatApp(object aSender, CommunicationsChannel_Application.EventArgsHeartbeat e)

 {

168 try

 IPC Quick Start Guide XTM0499-A1 51

 Appendix: Sample code

 {

170 if (mChannels == null || mChannels.Application == null)

 return;

172 if (this.InvokeRequired)

 this.BeginInvoke((MethodInvoker)delegate { EventHandlerHeartbeatApp(aSender, e); });

174 else

 {

176 //your code goes here....

 }

178 }

 catch (ObjectDisposedException) { } // ignore

180 catch (Exception ex) { AppLog.LogException(ex); }

 }

182

 void EventHandlerHeartbeatIP(object aSender, CommunicationsChannel_ImageProcessing.EventArgsHeartbeat e)

184 {

 try

186 {

 if (mChannels == null || mChannels.ImageProcessing == null)

188 return;

 if (this.InvokeRequired)

190 this.BeginInvoke((MethodInvoker)delegate { EventHandlerHeartbeatIP(aSender, e); });

 else

192 {

 //your code goes here...

194 }

 }

196 catch (ObjectDisposedException) { } // ignore

 catch (Exception ex) { AppLog.LogException(ex); }

198 }

200 #endregion Heartbeat from host

202 #region STATUS FROM HOST

204 #region ImageProcessing

206 void EventHandlerIPEvent(object aSender, CommunicationsChannel_ImageProcessing.EventArgsIPEvent e)

 {

208 try

 {

210 if (mChannels == null || mChannels.ImageProcessing == null)

 return;

212 if (this.InvokeRequired)

 this.BeginInvoke((MethodInvoker)delegate { EventHandlerIPEvent(aSender, e); }); // Make it non
 blocking if called form this UI thread

214 else

 {

216

 Debug.Print(DateTime.Now.ToString("dd/MM/yyyy H:mm:ss.fff") + " : e.IPEvent.EventType=" +
 e.IPEvent.EventType.ToString());

218

 switch (e.IPEvent.EventType)

220 {

 case IpcContract.ImageProcessing.IPEvent.EEventType.Live:

222 // Your code goes here...

 break;

224 case IpcContract.ImageProcessing.IPEvent.EEventType.Capture:

 // Your code goes here...

226 break;

 case IpcContract.ImageProcessing.IPEvent.EEventType.Average:

228 // Your code goes here...

 break;

230 case IpcContract.ImageProcessing.IPEvent.EEventType.AverageComplete:

 // flag set to true when image averaging complete

232 mImageAverageComplete = true;

52 XTM0499-A1 IPC Quick Start Guide

Appendix: Sample code

 break;

234 case IpcContract.ImageProcessing.IPEvent.EEventType.LoadImageComplete:

 // Your code goes here...

236 break;

 case IpcContract.ImageProcessing.IPEvent.EEventType.SaveImageComplete:

238 // flag set to true when image saved

 mImageSaveComplete = true;

240 break;

 default:

242 // Your code goes here...

 break;

244 }

 }

246 }

 catch (Exception ex) { AppLog.LogException(ex); }

248 }

250 #endregion

252 #endregion Status from host

254 #region User functions

256 private void UserForm_Load(object sender, EventArgs e)

 {

258 try

 {

260 // Attach channels

 mApplicationState = ChannelsAttach();

262

 if (mApplicationState == Channels.EConnectionState.Connected)

264 Debug.Print(DateTime.Now.ToString("dd/MM/yyyy H:mm:ss.fff") + " : Connected to Inspect-X");

 else

266 Debug.Print(DateTime.Now.ToString("dd/MM/yyyy H:mm:ss.fff") + " : Problem in connecting to
 Inspect-X");

 }

268 catch (Exception ex) { AppLog.LogException(ex); }

 }

270

 private void UserForm_FormClosing(object sender, FormClosingEventArgs e)

272 {

 try

274 {

 // Detach channels

276 ChannelsDetach();

278 Debug.Print(DateTime.Now.ToString("dd/MM/yyyy H:mm:ss.fff") + " : Disconnected from Inspect-X");

 }

280 catch (Exception ex) { AppLog.LogException(ex); }

 }

282

 private void numericUpDown_NumberImagesToAverage_ValueChanged(object sender, EventArgs e)

284 {

 mNumberImagesToAverage = (int) numericUpDown_NumberImagesToAverage.Value;

286 }

288 private void textBox1_TextChanged(object sender, EventArgs e)

 {

290 mFilename = textBox_Filename.Text.ToString();

 }

292

 private void btn_Start_Click(object sender, EventArgs e)

294 {

 // Initialise the thread with the ImageAverageSave routine

296 mThreadImageAverageSave = new Thread(ImageAverageSave);

 // Start the thread

 IPC Quick Start Guide XTM0499-A1 53

 Appendix: Sample code

298 mThreadImageAverageSave.Start();

 }

300

 #endregion User functions

302

 #region Image Processing Routines

304

 private void ImageAverageSave()

306 {

308 // If ApplicationState is not connected then immediately exit the routine

 if (mApplicationState != Channels.EConnectionState.Connected)

310 return;

312 // For safety, disable the Start button

 this.Invoke((MethodInvoker)delegate { btn_Start.Enabled = false; });

314

 // Set filepath

316 string aFilepath = mDirectory + "\ " + mFilename + @".tif";

318 // Set flags to false

 mImageAverageComplete = false;

320 mImageSaveComplete = false;

322 // Average set number of images

 mChannels.ImageProcessing.Image.Average(mNumberImagesToAverage, false);

324

 // Wait until average is complete

326 while (!mImageAverageComplete)

 Thread.Sleep(10);

328

 // Save image

330 mChannels.ImageProcessing.Image.SaveAsTiff(aFilepath, false, false, false);

332 // Wait until save has completed

 while (!mImageSaveComplete)

334 Thread.Sleep(10);

336 // Re-enable the Start button

 this.Invoke((MethodInvoker)delegate { btn_Start.Enabled = true; });

338

 }

340

 #endregion Image Processing Routines

342

 }

344 }

 IPC Quick Start Guide XTM0499-A1 55

NIKON INSTRUMENTS (SHANGHAI) CO. LTD.
phone: +86 21 5836 0050
phone: +86 10 5869 2255 (Beijing office)
phone: +86 20 3882 0550 (Guangzhou office)

NIKON SINGAPORE PTE. LTD.
phone: +65 6559 3618

nsg.industrial-sales@nikon.com

NIKON MALAYSIA SDN. BHD.
phone: +60 3 7809 3609

NIKON INSTRUMENTS KOREA CO. LTD.
phone: +82 2 2186 8400

C
o
p
y
ri
g

h
t

N
ik

o
n
 M

e
tr

o
lo

g
y
 N

V
 2

0
1
7
.

A
ll

ri
g

h
ts

 r
e
s
e
rv

e
d
.

T
h

e
 m

a
te

ri
a
ls

 p
re

s
e
n
te

d
 h

e
re

 a
re

 s
u
m

m
a

ry
 i
n
 n

a
tu

re
 a

n
d
 i
n
te

n
d
e
d
 f

o
r

g
e
n
e
ra

l
in

fo
rm

a
ti
o

n
 o

n
ly

.

NIKON CORPORATION
Shinagawa Intercity Tower C, 2-15-3, Konan, Minato-ku,
Tokyo 108-6290, Japan
phone: +81 3 6433 3701 fax: +81 3 6433 3784

www.nikon.com/products/industrial-metrology

NIKON METROLOGY EUROPE NV
phone: +32 16 74 01 01

sales.europe.nm@nikon.com

NIKON METROLOGY GMBH
phone: +49 6023 91733-0

sales.germany.nm@nikon.com

NIKON METROLOGY SARL
phone: +33 1 60 86 09 76

sales.france.nm@nikon.com

NIKON METROLOGY, INC.
phone: +1 810 2204360

sales.us.nm@nikon.com

NIKON METROLOGY UK LTD.
phone: +44 1332 811349

sales.uk.nm@nikon.com

NIKON METROLOGY NV
Geldenaaksebaan 329
B-3001 Leuven, Belgium
phone: +32 16 74 01 00 fax: +32 16 74 01 03

sales.nm@nikon.com

More offices and resellers at www.nikonmetrology.com

mailto:nsg.industrial-sales@nikon.com
http://www.nikon.com/products/industrial-metrology
mailto:sales.europe.nm@nikon.com
mailto:sales.germany.nm@nikon.com
mailto:sales.france.nm@nikon.com
mailto:sales.us.nm@nikon.com
mailto:sales.uk.nm@nikon.com
mailto:sales.nm@nikon.com
http://www.nikonmetrology.com/

	IPC Quick Start Guide
	Contents
	1 Introduction
	1.1 About this guide
	1.2 Prerequisites
	1.3 Getting started with C#
	1.4 Acknowledging this work
	1.5 Disclaimer
	1.6 Important information

	2 Setting Up
	3 Tutorial 1: Writing your first IPC program - Switching X-rays on and off
	3.1 Creating and setting up the Visual Studio project
	3.2 The front-end user form and back-end code
	3.3 An overview of the code
	3.4 Channel connections
	3.4.1 Specifying the channels to switch on
	3.4.2 Opening the channels and attaching event handlers
	3.4.3 Detaching event handlers
	3.4.4 Linking channel connections to the user form

	3.5 Defining callback functions
	3.5.1 Heartbeat callback functions
	3.5.2 All other callback functions

	3.6 X-ray routine
	3.7 Initialising a new thread
	3.8 Finalising the user interface
	3.9 Running the application
	3.10 Troubleshooting tutorial 1
	3.10.1 General troubleshooting
	3.10.2 Debugging
	3.10.3 A known bug in Inspect-X 5.1 with the X-ray Entire Status event
	3.10.4 Further errors
	3.10.5 Sample answer for tutorial 1

	4 Tutorial 2: Moving the manipulator
	4.1 Set up folders, solution and project
	4.2 Establish channel connections and callback functions
	4.3 Understanding manipulator move events
	4.4 Manipulator rotate application
	4.5 Sample answer
	4.6 Extensions

	5 Tutorial 3: Acquiring an image
	5.1 Set up folders, solution and project
	5.2 Establish channel connections and identify appropriate events
	5.3 Image-processing routine
	5.4 Sample answer
	5.5 Extensions

	6 IPC - Expanding the potential of Nikon X-ray CT systems
	6.1 Time-lapse imaging
	6.2 Batch 3D scans
	6.3 Integration with 3rd party software
	6.4 Integration with 3rd party hardware
	6.5 Limitless potential...!

	7 Appendix: Sample code
	7.1 Tutorial 1: UserForm.cs
	7.2 Tutorial 2: UserForm.cs
	7.3 Tutorial 3: UserForm.cs

