310 research outputs found

    Visualization at Supercomputing Centers: The Tale of Little Big Iron and the Three Skinny Guys

    Get PDF
    Supercomputing Centers (SC's) are unique resources that aim to enable scientific knowledge discovery through the use of large computational resources, the Big Iron. Design, acquisition, installation, and management of the Big Iron are activities that are carefully planned and monitored. Since these Big Iron systems produce a tsunami of data, it is natural to co-locate visualization and analysis infrastructure as part of the same facility. This infrastructure consists of hardware (Little Iron) and staff (Skinny Guys). Our collective experience suggests that design, acquisition, installation, and management of the Little Iron and Skinny Guys does not receive the same level of treatment as that of the Big Iron. The main focus of this article is to explore different aspects of planning, designing, fielding, and maintaining the visualization and analysis infrastructure at supercomputing centers. Some of the questions we explore in this article include:"How should the Little Iron be sized to adequately support visualization and analysis of data coming off the Big Iron?" What sort of capabilities does it need to have?" Related questions concern the size of visualization support staff:"How big should a visualization program be (number of persons) and what should the staff do?" and"How much of the visualization should be provided as a support service, and how much should applications scientists be expected to do on their own?&quot

    Shifting Winds: Using Ancestry DNA to Explore Multiracial Individuals\u27 Patterns of Articulating Racial Identity

    Get PDF
    This study explored how genotype information affects identification narratives of multiracial individuals. Twenty-one multiracial individuals completed individual interviews before and after receiving a DNA analysis to clarify their genetically based racial ancestry. Based on results, this article proposes patterns of articulating racial identity by multiracial individuals. Four patterns extend evolving research in multiracial identification, namely (1) the individual articulates a monoracial identity; (2) the individual articulates one identity, but this can shift in response to various conditions; (3) the individual articulates an extraracial identity, opting out of traditional categories applied to race; and (4) the person distinguishes traditional categories of race from culture and owns the two identities in different ways. Implications of these findings are discussed. First, adding new ancestry DNA information further muddles the neat categories of race, consistent with the view of race as socially constructed. Second, results emphasize the fluidity of identification for multiracial individuals. Third, DNA information challenges the neat percentages people tend to associate with their backgrounds. Particularly for younger multiracial individuals, there was less of a sense that race was a real thing and more that culture played a big part in how they saw themselves

    High throughput mutagenesis for identification of residues regulating human prostacyclin (hIP) receptor

    Get PDF
    The human prostacyclin receptor (hIP receptor) is a seven-transmembrane G protein-coupled receptor (GPCR) that plays a critical role in vascular smooth muscle relaxation and platelet aggregation. hIP receptor dysfunction has been implicated in numerous cardiovascular abnormalities, including myocardial infarction, hypertension, thrombosis and atherosclerosis. Genomic sequencing has discovered several genetic variations in the PTGIR gene coding for hIP receptor, however, its structure-function relationship has not been sufficiently explored. Here we set out to investigate the applicability of high throughput random mutagenesis to study the structure-function relationship of hIP receptor. While chemical mutagenesis was not suitable to generate a mutagenesis library with sufficient coverage, our data demonstrate error-prone PCR (epPCR) mediated mutagenesis as a valuable method for the unbiased screening of residues regulating hIP receptor function and expression. Here we describe the generation and functional characterization of an epPCR derived mutagenesis library compromising >4000 mutants of the hIP receptor. We introduce next generation sequencing as a useful tool to validate the quality of mutagenesis libraries by providing information about the coverage, mutation rate and mutational bias. We identified 18 mutants of the hIP receptor that were expressed at the cell surface, but demonstrated impaired receptor function. A total of 38 non-synonymous mutations were identified within the coding region of the hIP receptor, mapping to 36 distinct residues, including several mutations previously reported to affect the signaling of the hIP receptor. Thus, our data demonstrates epPCR mediated random mutagenesis as a valuable and practical method to study the structurefunction relationship of GPCRs. © 2014 Bill et al

    Comparative phylogeography of reef fishes from the Gulf of Aden to the Arabian Sea reveals two cryptic lineages

    Get PDF
    Arabian Sea is a heterogeneous region with high coral cover and warm stable conditions at the western end (Djibouti), in contrast to sparse coral cover, cooler temperatures, and upwelling at the eastern end (southern Oman). We tested for barriers to dispersal across this region (including the Gulf of Aden and Gulf of Oman), using mitochondrial DNA surveys of 11 reef fishes. Study species included seven taxa from six families with broad distributions across the Indo-Pacific and four species restricted to the Arabian Sea (and adjacent areas). Nine species showed no significant genetic partitions, indicating connectivity among contrasting environments spread across 2000 km. One butterflyfish (Chaetodon melannotus) and a snapper (Lutjanus kasmira) showed phylogenetic divergences of d = 0.008 and 0.048, respectively, possibly indicating cryptic species within these broadly distributed taxa. These genetic partitions at the western periphery of the Indo-Pacific reflect similar partitions recently discovered at the eastern periphery of the Indo-Pacific (the Hawaiian and the Marquesan Archipelagos), indicating that these disjunctive habitats at the ends of the range may serve as evolutionary incubators for coral reef organisms. © 2017 Springer-Verlag Berlin HeidelbergTh

    A novel role for RIP1 kinase in mediating TNFα production

    Get PDF
    Receptor-interacting protein 1 (RIP1) is a Ser/Thr kinase with both kinase-dependent and kinase-independent roles in death receptor signaling. The kinase activity of RIP1 is required for necroptosis, a caspase-independent pathway of programmed cell death. In some cell types, the inhibition of caspases leads to autocrine production of TNFα, which then activates necroptosis. Here, we describe a novel role for RIP1 kinase in regulating TNFα production after caspase inhibition. Caspase inhibitors activate RIP1 kinase and another protein, EDD, to mediate JNK signaling, which stimulates Sp1-dependent transcription of TNFα. This pathway is independent of nuclear factor κB and also occurs after Smac mimetic/IAP antagonist treatment or the loss of TNF receptor-associated factor 2 (Traf2). These findings implicate cIAP1/2 and Traf2 as negative regulators of this RIP1 kinase-dependent TNFα production pathway and suggest a novel role for RIP1 kinase in mediating TNFα production under certain conditions

    Molecular determinants of Smac mimetic induced degradation of cIAP1 and cIAP2

    Get PDF
    The inhibitors of apoptosis (IAP) proteins cIAP1 and cIAP2 have recently emerged as key ubiquitin-E3 ligases regulating innate immunity and cell survival. Much of our knowledge of these IAPs stems from studies using pharmacological inhibitors of IAPs, dubbed Smac mimetics (SMs). Although SMs stimulate auto-ubiquitylation and degradation of cIAPs, little is known about the molecular determinants through which SMs activate the E3 activities of cIAPs. In this study, we find that SM-induced rapid degradation of cIAPs requires binding to tumour necrosis factor (TNF) receptor-associated factor 2 (TRAF2). Moreover, our data reveal an unexpected difference between cIAP1 and cIAP2. Although SM-induced degradation of cIAP1 does not require cIAP2, degradation of cIAP2 critically depends on the presence of cIAP1. In addition, degradation of cIAP2 also requires the ability of the cIAP2 RING finger to dimerise and to bind to E2s. This has important implications because SM-mediated degradation of cIAP1 causes non-canonical activation of NF-κB, which results in the induction of cIAP2 gene expression. In the absence of cIAP1, de novo synthesised cIAP2 is resistant to the SM and suppresses TNFα killing. Furthermore, the cIAP2-MALT1 oncogene, which lacks cIAP2's RING, is resistant to SM treatment. The identification of mechanisms through which cancer cells resist SM treatment will help to improve combination therapies aimed at enhancing treatment response
    corecore