1,073 research outputs found

    Digital Image Compression Using Artificial Neural Networks

    Get PDF
    The problem of storing, transmitting, and manipulating digital images is considered. Because of the file sizes involved, large amounts of digitized image information are becoming common in modern projects. Our goal is to described an image compression transform coder based on artificial neural networks techniques (NNCTC). A comparison of the compression results obtained from digital astronomical images by the NNCTC and the method used in the compression of the digitized sky survey from the Space Telescope Science Institute based on the H-transform is performed in order to assess the reliability of the NNCTC

    Quadratic Dynamical Decoupling with Non-Uniform Error Suppression

    Full text link
    We analyze numerically the performance of the near-optimal quadratic dynamical decoupling (QDD) single-qubit decoherence errors suppression method [J. West et al., Phys. Rev. Lett. 104, 130501 (2010)]. The QDD sequence is formed by nesting two optimal Uhrig dynamical decoupling sequences for two orthogonal axes, comprising N1 and N2 pulses, respectively. Varying these numbers, we study the decoherence suppression properties of QDD directly by isolating the errors associated with each system basis operator present in the system-bath interaction Hamiltonian. Each individual error scales with the lowest order of the Dyson series, therefore immediately yielding the order of decoherence suppression. We show that the error suppression properties of QDD are dependent upon the parities of N1 and N2, and near-optimal performance is achieved for general single-qubit interactions when N1=N2.Comment: 17 pages, 22 figure

    Neutrino mixing and masses in a left-right model with mirror fermions

    Full text link
    In the framework of a left-right model containing mirror fermions with gauge group SU(3)CSU(2)LSU(2)RU(1)Y_{C} \otimes SU(2)_{L} \otimes SU(2)_{R} \otimes U(1)_{Y^\prime}, we estimate the neutrino masses, which are found to be consistent with their experimental bounds and hierarchy. We evaluate the decay rates of the Lepton Flavor Violation (LFV) processes μeγ\mu \rightarrow e \gamma, τμγ\tau \rightarrow \mu \gamma and τeγ\tau \rightarrow e\gamma. We obtain upper limits for the flavor-changing branching ratios in agreement with their present experimental bounds. We also estimate the decay rates of heavy Majorana neutrinos in the channels NW±lN \rightarrow W^{\pm} l^{\mp}, NZνlN \rightarrow Z \nu_{l} and NHνlN \rightarrow H \nu_{l}, which are roughly equal for large values of the heavy neutrino mass. Starting from the most general Majorana neutrino mass matrix, the smallness of active neutrino masses turns out from the interplay of the hierarchy of the involved scales and the double application of seesaw mechanism. An appropriate parameterization on the structure of the neutrino mass matrix imposing a symmetric mixing of electron neutrino with muon and tau neutrinos leads to Tri-bimaximal mixing matrix for light neutrinos.Comment: Accepted by European Physical Journal

    Observability inequalities for transport equations through Carleman estimates

    Get PDF
    We consider the transport equation \ppp_t u(x,t) + H(t)\cdot \nabla u(x,t) = 0 in \OOO\times(0,T), where T>0T>0 and \OOO\subset \R^d is a bounded domain with smooth boundary \ppp\OOO. First, we prove a Carleman estimate for solutions of finite energy with piecewise continuous weight functions. Then, under a further condition which guarantees that the orbits of HH intersect \ppp\OOO, we prove an energy estimate which in turn yields an observability inequality. Our results are motivated by applications to inverse problems.Comment: 18 pages, 3 figure

    Data Mining of the Coffee Rust Genome

    Get PDF
    The genomes of nine isolates of _Hemileia vastatrix_, the causal agent of coffee leaf rust were sequenced by Illumina and 454. Quality control, cleaning and _de novo_ assemblies of data were performed. Since isolates were obtained from the field and it is not possible to produce axenic cultures of _H. vastatrix_, MEGAN software was used to evaluate contamination levels and to select contigs with fungal similarities. Mitochondrial contigs were identified and annotated by comparing this assembly against the _Puccinia_ genome. Furthermore, two transcriptomes from isolates of _H. vastatrix_ were assembled to complement the genomic data
    corecore