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Abstract We consider the transport equation ∂tu(x, t) + H(t) · ∇u(x, t) = 0 in
Ω × (0,T ), where T > 0 and Ω ⊂ Rd is a bounded domain with smooth boun-
dary ∂Ω . First, we prove a Carleman estimate for solutions of finite energy with
piecewise continuous weight functions. Then, under a further condition which guar-
antees that the orbits of H intersect ∂Ω , we prove an energy estimate which in
turn yields an observability inequality. Our results are motivated by applications to
inverse problems.
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1 Introduction

Let d ∈ N and Ω ⊂ Rd be a bounded domain with smooth boundary ∂Ω , ν = ν(x)
be the unit outward normal vector at x to ∂Ω , and let x · y and |x| denote the scalar
product of x,y ∈ Rd and the norm of x ∈ Rd , respectively. We set Q := Ω × (0,T ),
and we consider

Pu(x, t) := ∂tu+H(t) ·∇u = 0 in Q, (1)

where H(t) := (H1(t), . . . ,Hd(t)) : [0,T ]→ Rd , H ∈C1([0,T ];Rd).
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Equation (1) is called a transport equation and H(t) describes the velocity of the
flow, which is here assumed to be independent of the spatial variable x.

Problem formulation

We assume
H0 := min

t∈[0,T ]
|H(t)|> 0, (2)

and, without loss of generality, we suppose that 0 = (0, . . . ,0) ∈Ω .

Let us recall the following definition.

Definition 1.1 A partition {t j}m
0 of [0,T ] is a strictly increasing finite sequence

t0, t1, . . . , tm (for some m ∈ N) of real numbers starting from the initial point t0 = 0
and arriving at the final point tm = T.

Hereafter, we will call {t j}m
0 a uniform partition of [0,T ] when the length of the

intervals [t j, t j+1] is constant for j = 0, . . . ,m−1, that is, t j =
T
m j, j = 0, . . . ,m.

Lemma 1.2 below ensures that any vector-valued function H(t), satisfying (2), ad-
mits a partition {t j}m

0 of [0,T ] such that the angles of oscillations of the vector H(t)
are less than π

2 in any time interval [t j, t j+1], j = 0, . . . ,m−1 (see Figure 1).

Given a partition {t j}m
0 of [0,T ], let us set

η j :=
H(t j)

|H(t j)|
, j = 0, . . . ,m−1. (3)

Lemma 1.2 Let S∗ ∈ (1/
√

2,1). For any given H ∈ Lip([0,T ];Rd), satisfying con-
dition (2), there exist m ∈ N and a partition {t j}m

0 of [0,T ] such that

H(t)
|H(t)|

·η j ≥ S∗, ∀t ∈ [t j, t j+1], ∀ j = 0, . . . ,m−1, (4)

where η j are defined in (3).

Lemma 1.2 is proved in the Appendix.

Remark 1.3 Condition (4) means that there exist m cones in Rd such that the
axis of every cone, that is, the straight line passing through the apex about which
the whole cone has a circular symmetry, is the line between 0 = (0, . . . ,0) and
η j, j = 0, . . . ,m−1. Moreover, a straight line passing through the apex is contained
in the cone if the angle between this line and the axis of the cone is less than π/4.
Indeed, the inequality (4), that is H(t) ·η j > cosϑ ∗|H(t)| for some ϑ ∗ ∈ (0, π

4 ), is
equivalent to the fact that the angle between H(t) and η j is less than π/4. Thus,
H(t) is contained in the same cone ∀t ∈ [t j, t j+1]. Let us note that it can occur that
ηi = η j, for i 6= j.
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Fig. 1 In this picture S∗ = cos π

6 , m = 6 and H j := H(t j), j = 0, . . . ,5.

Let δΩ = diam(Ω) = sup
x,y∈Ω

|x− y|. Let us fix S∗ ∈ (1/
√

2,1), r > 0 and define

x j :=−R jη j, j = 0, . . . ,m−1, (5)

where η j is defined in (3) and{
R j = 2 jR0 +(2 j−1)(δΩ + r),
R0 = 1+S∗

1−S∗
δΩ .

(6)

We note that from (6) it follows that

x j 6∈Ω , j = 0, . . . ,m−1.

For every j = 0, . . . ,m−1, let us define

MΩ (x j) := max
x∈Ω

|x− x j| and dΩ (x j) := min
x∈Ω

|x− x j|. (7)

Remark 1.4 The choice of the R j’s in (6) (see Lemma 2.2 below and Figure 2)
guarantees that the points x j’s are located sufficiently far away from Ω and at in-
creasing distances from the origin.

By the choice of the finite sequence R j = |x j| in (6) (R j sufficiently large com-
pared with δΩ ) we deduce in Lemma 2.1 below that

(x+R jη j) ·η j ≥ S∗|x+R jη j|, ∀x ∈Ω .

In other words, the apex angle of the minimum cone with the apex x j which includes
Ω is less than 2arccosS∗(< π/2) (see Figure 3).



4 Piermarco Cannarsa, Giuseppe Floridia and Masahiro Yamamoto

Fig. 2 In this picture S∗ = cos π

6 , m = 3 and H j := H(t j), j = 0,1,2.

Fig. 3 In this picture: Ω := {(x,y) ∈ R2 : |(x,y) − (1,0)| < 3}, C = (1,0), S∗ = cosα ∈
( 1√

2
,1), m = 1, H j := H(t j), j = 0,1, and β ,γ > α, α0 = α,δ ≤ α. We note that dΩ (x0) =

dist(x0,G) and MΩ (x0) = dΩ (x0)+6.
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We now introduce the weight function ϕ(x, t) to be used in our Carleman esti-
mate, as follows. First, we define ϕ on Ω × [0,T ) setting, for every x ∈Ω ,

ϕ(x, t) = ϕ j(x, t) :=−β (t− t j)+ |x− x j|2, t ∈ [t j, t j+1), j = 0, . . . ,m−1, (8)

where
β := (2S2

∗−1)H0dΩ (x0), (9)

with H0 and dΩ (x0) defined by (2) and (7), respectively. Then we extend ϕ to Ω ×
[0,T ] by continuity. Observe that ϕ is piecewise smooth in t and smooth in x.

Main results

In this article, under condition (2), we establish an observability inequality for (1)
which estimates the L2-norm of u(x,0) by lateral boundary data u|∂Ω×(0,T ) under
some conditions on H(t) (see Theorem 1.6). This observability inequality is a con-
sequence of the following Carleman estimate.

Theorem 1.5 Let u∈H1(Q) be a solution of equation (1), where H ∈C1([0,T ];Rd)
satisfies (2). Let {t j}m

0 be a partition of [0,T ] satisfying (4). Then, there exist con-
stants s0,C0,C > 0 such that for all s > s0 we have

s2
∫

Q
|u|2e2sϕ dxdt + se−C0s

m−1

∑
j=0

∫
Ω

|u(x, t j)|2dx

≤ C
∫

Q
|Pu|2e2sϕ dxdt +CseCs

∫
Σ

|u|2dγdt +CseCs
∫

Ω

|u(x,T )|2 dx,

where ϕ(x, t) : Q−→ R is the weight function defined in (8), and

Σ = {(x, t) ∈ ∂Ω × (0,T ) : H(t) ·ν(x)≥ 0} (10)

is the subboundary of all exit points for H.

We now give the observability inequality for the equation (1).

Theorem 1.6 Let g ∈ L2(∂Ω × (0,T )) and let us consider the following problem{
∂tu+H(t) ·∇u = 0 in Q := Ω × (0,T ),
u|∂Ω×(0,T ) = g. (11)

Let us suppose that there exists a partition {t j}m
0 of [0,T ] associated to H(t) satis-

fying (4) such that the following condition holds

max
0≤ j≤m−1

(t j+1− t j)dΩ (x j)

M2
Ω
(x j)

>
1

H0(2S2
∗−1)

, (12)
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where MΩ (x j),dΩ (x j) and H0 are defined in (7) and (2), respectively. Then, there
exists a constant C > 0 such that the following inequality holds

‖u(·, t)‖L2(Ω) ≤C‖g‖L2(∂Ω×(0,T )), 0≤ t ≤ T,

for any u ∈ H1(Q) satisfying (11).

Assumption (12) is meant to guarantee that the orbit {H(t) ∈ Rd : t ∈ [0,T ]}
intersects ∂Ω . In the following example, we show that this or a similiar condition
is indeed necessary: observability fails without some extra assumption.

In the following, for η > 0 we consider Ωη := {z ∈ R2 : |z|< η}.

Example 1 Let σ > 0 and ρ ∈ (0,2σ/3). Let Ω := Ωρ and let f ∈ C1(Ω σ ;R)
satisfy supp( f )⊂Ωρ/2 ⊆Ω σ and let α(t) = (ρ cos t,ρ sin t), t ∈ [0,2π]. We set

v(x,y, t) = f (x−ρ cos t,y−ρ sin t).

Thus, v satisfies (1), where H(t) = α ′(t), 0≤ t ≤ T , and v vanishes at the boundary
of Ωσ . So, {

∂tv+α ′(t) ·∇v = 0 in Ωσ × (0,T ),
v|∂Ωσ×(0,T ) = g, (13)

with g≡ 0. We note that |α ′(t)|= ρ > 0 and, for t ∈ [0,T ], the support of v(·, ·, t) is

supp(v(·, ·, t)) =
{
(x,y) ∈ R2 : |(x−ρ cos t,y−ρ sin t)|< ρ

2

}
. (14)

Then, from (13) and (14) it follows that observability fails. �

We conclude this introduction with some comments on our main results.

1. One could establish an estimate similar to the one in Theorem 1.6 with the max-
imum norm by the method of characteristics. Our proof is based on Carleman
estimates, which naturally provide L2-estimates for solutions over Ω ×{t}. The
method of characteristics does not yield such global L2-estimates directly. L2-
estimates, not estimates in the maximum norm, are related to exact controllabil-
ity and are more flexibly applied to other problems such as inverse problems,
although we discuss no such aspects in this paper.

2. Although, due to the simplicity of equation (1), the method of characteristics can
be easily applied to explain the validity of observability results, the one point we
would like to stress is the fact that, in this paper, we intend to derive a Carleman
estimate under minimal assumptions. Essentially, we want to give an explicit
construction of the weight function that only depends on the lower bound (2) and
the modulus of continuity of H.

3. It is worth noting that Theorem 1.6 aims at the determination of the solution u on
the whole cylinder Ω × [0,T ], not only of u(·,0) in Ω . For this reason, in The-
orem 1.6, we have to measure data on the whole lateral boundary ∂Ω × (0,T ),
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not just on a subboundary as we did for the Carleman estimate in Theorem 1.5—
where, however, the norm of u(·,T ) in Ω is included. The fact that measurements
on the whole boundary are necessary to majorize u on Ω × [0,T ] can be easily
understood by looking at the representation solutions given by characteristics.

4. Another purpose of this paper is to single out an assumption which suffices to
derive observability from a Carleman estimate. We do so with condition (12),
which has a clear geometric meaning: one requires H(t) not to oscillate too much
for enough time, giving an explicit evaluation of such a time. We do not pretend
our method to provide the optimal evaluation of the observability time. On the
other hand, Example 1 shows that some assumption is needed for observability:
(12) is an example of a sufficient quantitative condition for the observability of
solutions on Ω × [0,T ].

Main references and outline of the paper

Carleman estimates for transport equations are proved in Gaitan and Ouzzane [5],
Gölgeleyen and Yamamoto [6], Cannarsa, Floridia, Gölgeleyen and Yamamoto [4],
Klibanov and Pamyatnykh [7], Machida and Yamamoto [8] to be applied to inverse
problems of determining spatially varying coefficients, where coefficients of the
first-order terms in x are assumed not to depend on t. In order to improve results
for inverse problems by the application of Carleman estimates, we need a better
choice of the weight function in the Carleman estimate. The works [5] and [7] use
one weight function which is very conventional for a second-order hyperbolic equa-
tion but seems less useful to derive analogous results for a time-dependent function
H(t). Our choice is more similar to the one in [8] and [6], but even these papers
allow no time dependence for H. Although it is very difficult to choose the best pos-
sible weight function for the partial differential equation under consideration, our
choice (8) of the weight function seems more adapted for the nature of the transport
equation (1).

In [4] we consider the transport equation ∂tu(x, t)+(H(x)·∇u(x, t))+ p(x)u(x, t)=
0 in Ω×(0,T ) (Ω ⊂Rn bounded domain), and discuss two inverse problems which
consist of determining a vector-valued function H(x) or a real-valued function p(x)
by initial values and data on a subboundary of Ω . In particular in [4] we obtain
conditional stability of Hölder type in a subdomain D provided that the outward
normal component of H(x) is positive on ∂D∩∂Ω . The proofs are based also on a
Carleman estimate where the weight function depends on H.

As it is commented above, the method of characteristics is applicable to inverse
problems for first-order hyperbolic systems as well as transport equations and we
refer for example to Belinskij [2] and Chapter 5 in Romanov [9], which discuss an
inverse problem of determining an N×N-matrix C(x) in

∂tU(x, t)+Λ∂xU(x, t)+C(x)U(x, t) = F(x, t), 0 < x < `, t > 0
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with a suitably given matrix Λ and vector-valued function F . The works [2] and
[9] apply the method of characteristics to prove the uniqueness and the existence of
C(x) realizing extra data of U provided that ` > 0 is sufficiently small.

The method by Carleman estimates for establishing both energy estimates like
Theorem 1.6 and inverse problems of determining spatial varying functions is well-
known for hyperbolic and parabolic equations and we refer to Beilina and Klibanov
[1], Bellassoued and Yamamoto [3], Yamamoto [10].

The plan of the paper is the following. In Section 2, we prove the Carleman esti-
mate (Theorem 1.5). In Section 3, we obtain the observability inequality (Theorem
1.6). Finally, in Appendix we put the proof of Lemma 1.2.

2 Proof of the Carleman estimate

Let S∗ ∈
(

1√
2
,1
)

and {t j}m
0 a partition of [0,T ] associated to H(t) such that (4) is

satisfied.

2.1 Some preliminary lemmas

Lemma 2.1 Given R j, j = 0, . . . ,m−1, as in (6), then

(x+R jη j) ·η j ≥ S∗|x+R jη j|, ∀x ∈Ω , (15)

where η j are defined in (3).

Proof. For every x ∈Ω , we have |x|= |x−0| ≤ δΩ since 0 ∈Ω , and

S∗|x+R jη j| ≤ S∗ (|x|+R j|η j|) = S∗ (|x|+R j)≤ S∗ (δΩ +R j) , (16)

and, since −x ·η j ≤ |x ·η j| ≤ |x||η j|= |x| ≤ δΩ ,

(x+R jη j) ·η j = x ·η j +R jη j ·η j = x ·η j +R j ≥ R j−|x| ≥ R j−δΩ . (17)

From (16) and (17) it follows that a sufficient condition for the inequality (15) is the
following

R j−δΩ ≥ S∗(δΩ +R j),

that is, R j ≥ 1+S∗
1−S∗

δΩ . For every j = 1, . . . ,m−1, the last condition is verified by R j
defined as in (6). ut

By the definition (6) of the sequence {R j} the following Lemma 2.2 follows.

Lemma 2.2 Let x j =−R jη j, j = 0, . . . ,m−1, with R j defined as in (6). Then
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MΩ (x j) = max
x∈Ω

|x− x j|< min
x∈Ω

|x− x j+1|= dΩ (x j+1), j = 0, . . . ,m−2. (18)

By Lemma 2.2 (see also Figure 2) we deduce

max
j=0,...,m−1

MΩ (x j) = MΩ (xm−1) and min
j=0,...,m−1

dΩ (x j) = dΩ (x0). (19)

Lemma 2.3 Let x j =−R jη j, j = 0, . . . ,m−1, with R j defined as in (6). Then,

H(t) · (x− x j)≥C∗H0 dΩ (x0), t j ≤ t ≤ t j+1, j = 0, . . . ,m−1, x ∈Ω ,

where C∗ = 2S2
∗−1 > 0 and H0 = min

t∈[0,T ]
|H(t)|> 0.

Proof. Let ϑ ∗ ∈ (0,π/4) satisfy cosϑ ∗= S∗. For t ∈ [t j, t j+1], j = 0, . . . ,m−1, from
(15) and Remark 1.3 we deduce that

H(t) · (x− x j)≥ cos2ϑ
∗H0dΩ (x j)≥ (2S2

∗−1)H0dΩ (x0), x ∈Ω

which is our conclusion. ut

2.2 Derivation of the Carleman estimate

After introducing the previous lemmas in Section 2.1, we are able to prove Theorem
1.5. In this section, for simplicity of notations, for j = 0, . . . ,m−1 let us set

M j := MΩ (x j) and µ j := dΩ (x j), (20)

see (7) for the definitions of MΩ (x j) and dΩ (x j).

Proof. (of Theorem 1.5). We derive a Carleman estimate on

Q j := Ω × (t j, t j+1), 0≤ j ≤ m−1.

Let w j := esϕ j u, where ϕ j is defined in (8), and

L jw j := esϕ j P(e−sϕ j w j). (21)

By direct calculations, we obtain

L jw j = ∂tw j +H(t) ·∇w j− s(Pϕ j)w j in Q j, (22)

where, keeping in mind (8) and the definition of the operator P contained in (1),

Pϕ j(x, t) = ∂tϕ j +H(t) ·∇ϕ j =−β +2H(t) · (x− x j), 0≤ j ≤ m−1.

By Lemma 2.3 and (9), since β = (2S2
∗−1)H0µ0 ∈

(
0,2(2S2

∗−1)H0µ0
)

we have
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Pϕ j =−β +2H(t) · (x− x j)≥ C∗H0µ0, (23)

where C∗ = 2S2
∗−1. Therefore, by (23) we obtain∫

Q j

|L jw j|2dxdt ≥ −2s
∫

Q j

(Pϕ j)w j(∂tw j +H(t) ·∇w j)dxdt

+ s2
∫

Q j

|2H(t) · (x− x j)−β |2|w j|2dxdt

≥ I1 + I2 +C2
∗H

2
0 µ

2
0 s2

∫
Q j

|w j|2dxdt, (24)

where

I1 :=−2s
∫

Q j

(Pϕ j)w j∂tw jdxdt and I2 :=−2s
∫

Q j

(Pϕ j)H(t) · (w j∇w j)dxdt.

We have

I1 = −2s
∫

Q j

(Pϕ j)w j∂tw jdxdt =−s
∫ t j+1

t j

∫
Ω

(Pϕ j)∂t(w2
j)dxdt

= s
∫

Ω

[
Pϕ j(x, t)|w j(x, t)|2

]t=t j
t=t j+1

dx+ s
∫

Q j

∂t(Pϕ j(x, t))|w j|2dxdt. (25)

Recalling (20), we obtain

∂t(Pϕ j(x, t)) = 2(x− x j) ·H ′(t)≥−2Mm−1 max
t∈[0,T ]

|H ′(t)|=:−H ′0.

Consequently, from (25) we deduce

I1 ≥ s
∫

Ω

[
Pϕ j(x, t)|w j(x, t)|2

]t=t j
t=t j+1

dx− sH ′0

∫
Q j

|w j|2dxdt. (26)

Then, for I2 we deduce

I2 = −2s
∫

Q j

(Pϕ j)H(t) · (w j∇w j)dxdt =−s
∫ t j+1

t j

∫
Ω

Pϕ j

d

∑
k=1

Hk(t)∂k(w2
j)dxdt

= s
∫ t j+1

t j

∫
Ω

d

∑
k=1

(∂k(Pϕ j))Hk(t)|w j|2dxdt− s
∫ t j+1

t j

∫
∂Ω

Pϕ j(H(t) ·ν(x))|w j|2dγdt.

We note that
H(t) · (x− x j)≤ |H(t)||x− x j| ≤ H∗M∗, (27)

where we set (see (19))

M∗ = Mm−1 and H∗ := max
t∈[0,T ]

|H(t)|> 0.
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Therefore, since Pϕ j > 0 by (23) and ∂k(Pϕ j) = 2Hk(t), we estimate I2 in the fol-
lowing way:

I2 = 2s
∫ t j+1

t j

∫
Ω

d

∑
k=1

H2
k (t)|w j|2dxdt− s

∫ t j+1

t j

∫
∂Ω

Pϕ j(H(t) ·ν(x))|w j|2dγdt

≥ 2s
∫ t j+1

t j

∫
Ω

|H(t)|2|w j|2dxdt

− s
∫

Σ j

(−β +2H(t) · (x− x j))(H(t) ·ν(x))|w j|2dγdt

≥ 2H2
0 s
∫ t j+1

t j

∫
Ω

|w j|2dxdt−2s
∫

Σ j

(H(t) · (x− x j))(H(t) ·ν(x))|w j|2dγdt

≥ 2H2
0 s
∫

Q j

|w j|2dxdt−2H∗M∗s
∫

Σ j

|H(t)||ν(x)||w j|2dγdt

≥ 2H2
0 s
∫

Q j

|w j|2dxdt−2H2
∗M∗s

∫
Σ j

|w j|2dγdt, (28)

where
Σ j = {(x, t) ∈ ∂Ω × (t j, t j+1) : H(t) ·ν(x)≥ 0}.

Hence, by (24), (26) and (28), we obtain∫
Q j

|L jw j|2dxdt ≥ s
∫

Ω

[
Pϕ j(x, t)|w j(x, t)|2

]t=t j
t=t j+1

dx

− H ′0s
∫

Q j

|w j|2dxdt +C1s2
∫

Q j

|w j|2dxdt

− 2H2
∗M∗s

∫
Σ j

|w j|2dγdt ,

for some positive constant C1. Since w j := esϕ j u, from the previous inequality, for
j = 0, . . . ,m−1, by (21) we deduce that there exists also a positive constant C2 such
that ∫ t j+1

t j

∫
Ω

|Pu|2e2sϕ j dxdt ≥ s
∫

Ω

ψ j(x)dx+(C1s2−H ′0s)
∫

Q j

e2sϕ j |u|2dxdt

− C2seC2s
∫

Σ j

|u|2dγdt, (29)

where C1,C2 are positive constants and

ψ j(x) :=
[
Pϕ j(x, t)e2sϕ j(x,t) |u(x, t)|2

]t=t j

t=t j+1
.

By (8) and (23) we obtain
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ψ j(x) =
[
(2H(t) · (x− x j)−β )e2s(−β (t−t j)+|x−x j |2)|u(x, t)|2

]t=t j

t=t j+1

= (2H(t j) · (x− x j)−β )e2s|x−x j |2 |u(x, t j)|2

− (2H(t j+1) · (x− x j)−β )e2s(−β (t j+1−t j)+|x−x j |2)|u(x, t j+1)|2. (30)

Therefore, summing in j from 0 to m−1 and keeping in mind that t0 = 0 and tm = T
by (9) and (27) we have

m−1

∑
j=0

ψ j(x) ≥ (2H(0) · (x− x0)−β )e2s(|x−x0|2)|u(x,0)|2 +
m−1

∑
j=1

q j(x)|u(x, t j)|2

− (2H(T ) · (x− xm−1)−β )e2s(−β (T−tm−1)+|x−xm−1|2)|u(x,T )|2

≥ µ0H0e2sµ2
0 |u(x,0)|2−2M∗H∗e2sM2

∗ |u(x,T )|2 +
m−1

∑
j=1

q j(x)|u(x, t j)|2,

where, for j = 1, . . . ,m−1, we set

q j(x) := (2H(t j) · (x− x j)−β )e2s|x−x j |2 −
(
2H(t j) ·

(
x− x j−1

)
−β

)
e2s|x−x j−1|2 .

Thus, by (7), (20), (23) and (27), we obtain the following estimate

q j(x)≥ C̃µ0H0e2sµ2
j −H∗M∗e

2sM2
j−1 = C̃µ0H0e2sµ2

j

(
1− M∗H∗

C̃µ0H0
e−2s

(
µ2

j−M2
j−1

))
.

Thanks to (18) (see Lemma 2.2), the choice of the points x j permits to have
µ j −M j−1 > 0, and we deduce that there exist s j > 0 enough large, that is s j >

1
2
(

µ2
j−M2

j−1

) log
(

2H∗M∗
C̃µ0H0

)
, j = 1, . . . ,m−1, such that, for every s> s0 := max

j=1,...,m−1
s j,

we have
q j(x)≥

µ0H0

2
e2sµ2

j ≥ µ0H0

2
e2sµ2

0 ≥C0eC0s, (31)

for some positive constant C0 =C0(s). Thus, by (29), (30), and (31) we have that
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Q
|Pu|2e2sϕ dxdt =

m−1

∑
j=0

∫ t j+1

t j

∫
Ω

|Pu|2e2sϕ j dxdt

≥ s
m−1

∑
j=0

∫
Ω

ψ j(x)dx+(C1s2−H ′0s)
m−1

∑
j=0

∫
Q j

e2sϕ j |u|2dxdt

− C2seC2s
m−1

∑
j=0

∫
Σ j

|u|2dγdt

≥ C3s2
∫

Q
e2sϕ j |u|2dxdt−C2seC2s

m−1

∑
j=0

∫
Σ j

|u|2dγdt

+ C0seC0s
m−1

∑
j=0

∫
Ω

|u(x, t j)|2dx−C2seC2s
∫

Ω

|u(x,T )|2 dx

for any 0 < C3 < C1 and all s sufficiently large. The last estimate completes the
proof of Theorem 1.5. ut

3 Proof of the observability inequality

Let us give in Section 3.1 two lemmas and in Section 3.2 the proof of Theorem 1.6.

3.1 Energy estimates

Let us give the following energy estimates.

Lemma 3.1 Let g ∈ L2(∂Ω × (0,T )) and let us consider the problem{
∂tu+H(t) ·∇u = 0 in Q := Ω × (0,T ),
u|∂Ω×(0,T ) = g. (11)

Then, for every t ∈ [0,T ], the following energy estimates hold

‖u(·, t)‖2
L2(Ω) ≤ ‖u(·,0)‖

2
L2(Ω)+H∗‖g‖2

L2(∂Ω×(0,T )), (32)

‖u(·,0)‖2
L2(Ω) ≤ ‖u(·, t)‖

2
L2(Ω)+H∗‖g‖2

L2(∂Ω×(0,T )), (33)

for any u ∈ H1(Q) satisfying (11), where H∗ := max
ξ∈[0,T ]

|H(ξ )|.

Proof. Let H(t) = (H1(t), . . . ,Hd(t)), t ∈ [0,T ]. Multiplying the equation in (11) by
2u and integrating over Ω , we have
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Ω

2u∂tudx+
∫

Ω

d

∑
k=1

Hk(t)2u∂kudx = 0,

then,

∂t

(∫
Ω

|u(x, t)|2dx
)
+

d

∑
k=1

∫
Ω

Hk(t)∂k(|u(x, t)|2)dx = 0.

So, integrating by parts, for every t ∈ [0,T ], we obtain

∂t

(∫
Ω

|u(x, t)|2dx
)
=−

d

∑
k=1

∫
∂Ω

Hk|u|2νkdγ =−
∫

∂Ω

(H ·ν)|g|2dγ, (34)

where ν = (ν1, . . . ,νd) is the unit normal vector outward to the boundary ∂Ω . Set-
ting

E(t) :=
∫

Ω

|u(x, t)|2dx, t ∈ [0,T ],

by (34), integrating on [0, t] we deduce

|E(t)−E(0)|=
∣∣∣∣−∫ t

0

∫
∂Ω

(H(ξ ) ·ν(x))|g(x,ξ )|2dγdξ

∣∣∣∣≤ H∗‖g‖2
L2(∂Ω×(0,T ))

where H∗ = max
ξ∈[0,T ]

|H(ξ )|. Thus, for all t ∈ [0,T ], we have

E(t)≤ E(0)+H∗‖g‖2
L2(∂Ω×(0,T )),

and
E(0)≤ E(t)+H∗‖g‖2

L2(∂Ω×(0,T )).

ut

Lemma 3.2 Let 0 ≤ s1 < s2 ≤ T, g ∈ L2(∂Ω × (0,T )). Let us assume that there
exists a positive constant C =C(s1,s2) such that for every t ∈ [s1,s2] the following
observability inequality holds

‖u(·, t)‖L2(Ω) ≤C‖g‖L2(∂Ω×(0,T )), for all u ∈ H1(Q) solution to (11). (35)

Then, there exists a positive constant C = C(s1,s2,T ) such that the inequality (35)
holds for every t ∈ [0,T ].

Proof. Let E(t) = ‖u(·, t)‖2
L2(Ω)

, t ∈ [0,T ]. For every t ∈ [0,s1], keeping in mind
Lemma 3.1, by (32), (33) and (35) we obtain

‖u(·, t)‖2
L2(Ω) = E(t) ≤ E(0)+H∗‖g‖2

L2(∂Ω×(0,T )) ≤ E(s1)+2H∗‖g‖2
L2(∂Ω×(0,T ))

≤ (C2 +2H∗)‖g‖2
L2(∂Ω×(0,T )) . (36)

For every t ∈ [s2,T ], using again Lemma 3.1, by (32) and (35) we deduce
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‖u(·, t)‖2
L2(Ω)=E(t)≤E(s2)+H∗‖g‖2

L2(∂Ω×(0,T ))≤ (C2+H∗)‖g‖2
L2(∂Ω×(0,T )) . (37)

From (36) and (37) the conclusion follows. ut

3.2 The Proof

Proof. (of Theorem 1.6).
Let ϕ be the weight function given in (8). By the assumption (12) it follows that
there exists j∗ ∈ {0, . . .m−1} such that

(t j∗+1− t j∗)dΩ (x j∗)

M2
Ω
(x j∗)

>
1

H0(2S2
∗−1)

. (38)

By the definition of the weight function ϕ(x, t) (see (8)), it follows that, for every
x ∈Ω , we have

ϕ(x, t j∗) = ϕ j∗(x, t j∗) = |x− x j∗ |2 > 0

and, since (38) holds, keeping in mind that β = (2S2
∗−1)H0dΩ (x0),

lim
t→(t j∗+1)

−
ϕ j∗(x, t) = |x− x j∗ |2−β (t j∗+1− t j∗)< 0.

Therefore, there exist ε ∈
(

0,
t j∗+1− t j∗

2

)
and δ > 0 such that{

ϕ(x, t) = ϕ j∗(x, t)> δ , t ∈ [t j∗ , t j∗ + ε], x ∈Ω ,
ϕ(x, t) = ϕ j∗(x, t)<−δ , t ∈ [t j∗+1−2ε, t j∗+1), x ∈Ω .

(39)

Let u∈H1(Q) satisfy (11) on Q=Ω×(0,T ). Let us consider Q∗ :=Ω×(t j∗ , t j∗+1)⊆
Q. Now we define a cut-off function χ ∈C∞([t j∗ , t j∗+1]) such that 0≤ χ ≤ 1 and

χ(t) =
{

1, t ∈ [t j∗ , t j∗+1−2ε],
0, t ∈ [t j∗+1− ε, t j∗+1].

We set
v(x, t) = χ(t)u(x, t), (x, t) ∈ Q∗, (40)

and keeping in mind (11) and (40), we deduce
∂tv+H(t) ·∇v = u(∂t χ) in Q∗,
v|∂Ω×(t j∗ , t j∗+1)

= χg,
v(x, t j∗+1) = 0, x ∈Ω .

(41)

Applying Theorem 1.5 to the problem (41), since |v(x, t)| ≤ |u(x, t)| for every (x, t)∈
Q∗ (see (40)), we obtain
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s2
∫

Q∗
|v|2e2sϕ dxdt ≤C

∫
Q∗
|u|2|∂t χ|2e2sϕ dxdt +CeCs

∫
Σ

|u|2dγdt, (42)

for all large s > 0 and for some positive constant C.
Therefore, by (40) and (39) we have

s2
∫

Q∗
|v|2e2sϕ dxdt ≥ s2

∫ t j∗+ε

t j∗

∫
Ω

|u|2e2sϕ0dxdt ≥ s2e2sδ

∫ t j∗+ε

t j∗

∫
Ω

|u|2dxdt (43)

and, since χ ∈C∞([t j∗ , t j∗+1]), we also deduce∫
Q∗
|u|2|∂t χ|2e2sϕ dxdt =

∫ t j∗+1−ε

t j∗+1−2ε

∫
Ω

|u|2|∂t χ|2e2sϕ j∗dxdt

≤ K1e−2sδ

∫ t j∗+1−ε

t j∗+1−2ε

∫
Ω

|u|2dxdt ≤ K1‖u‖2
L2(Q∗)e

−2sδ, (44)

for all large s > 0 and for some positive constant K1.
From (42), by (43) and (44) we obtain

s2e2sδ

∫ t j∗+ε

t j∗

∫
Ω

|u|2dxdt ≤C1‖u‖2
L2(Q∗)e

−2sδ +C1eC1s‖g‖2
L2(∂Ω×(0,T )), (45)

for all large s > 0 and for some positive constant C1.
Setting

E(t) :=
∫

Ω

|u(x, t)|2dx, t ∈ [t j∗ , t j∗+1],

by the energy estimate (33) of Lemma 3.1 we deduce∫ t j∗+ε

t j∗

∫
Ω

|u|2dxdt =
∫ t j∗+ε

t j∗
E(t)dt ≥

∫ t j∗+ε

t j∗
(E(t j∗)−H∗‖g‖2

L2(∂Ω×(0,T )))dt

= ε

(
E(t j∗)−H∗‖g‖2

L2(∂Ω×(0,T ))

)
(46)

and, by the energy estimate (32) of Lemma 3.1 we obtain

‖u‖2
L2(Q∗) =

∫ t j∗+1

t j∗
E(t)dt =

∫ t j∗+1

t j∗

(
E(t j∗)+H∗‖g‖2

L2(∂Ω×(0,T ))

)
dt

≤ E(t j∗)T +H∗T‖g‖2
L2(∂Ω×(0,T )). (47)

Substituting (46) and (47) into (45), we have
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s2e2sδ
ε

(
E(t j∗)−H∗‖g‖2

L2(∂Ω×(0,T ))

)
≤ s2e2sδ

∫ t j∗+ε

t j∗

∫
Ω

|u|2dxdt

≤ C1‖u‖2
L2(Q∗)e

−2sδ +C1eC1s‖g‖2
L2(∂Ω×(0,T ))

≤ C1e−2sδ

(
E(t j∗)T +H∗T‖g‖2

L2(∂Ω×(0,T ))

)
+ C1eC1s‖g‖2

L2(∂Ω×(0,T )),

for all large s > 0. Hence, for all s large enough,

(s2e2sδ
ε−C1Te−2sδ )E(t j∗)≤

(
C1eC1s + s2e2sδ

εH∗+C1e−2sδ H∗T
)
‖g‖2

L2(∂Ω×(0,T ))

But, for s > 0 enough large, s2e2sδ ε −C1Te−2sδ > 0. Thus, using again (32), for
every t ∈ [t j∗ , t j∗+1], we obtain

‖u(·, t)‖L2(Ω) = E(t)≤ E(t j∗)+H∗‖g‖2
L2(∂Ω×(0,T )) ≤C2‖g‖L2(∂Ω×(0,T )),

for some positive constant C2. The conclusion of the proof of Theorem 1.6 follows
from the above inequality, using Lemma 3.2 to extend the above observability in-
equality from [t j∗ , t j∗+1] to [0,T ]. ut

Remark 3.3 By adapting the above proof, one could easily obtain an observabil-
ity inequality for u(·,0) on Ω , requiring measurements just on the subboundary Σ

defined in (10).

Appendix

In this appendix we prove Lemma 1.2.

Proof. (of Lemma 1.2). Since H ∈ Lip([0,T ];Rd) there exists L > 0 such that

|H(t)−H(s)| ≤ L|t− s|, ∀t,s ∈ [0,T ].

Let us consider, for simplicity, a uniform partition {t j}m
0 of [0,T ]. Let us set

η j :=
H(t j)

|H(t j)|
, j = 0 . . . ,m−1.

For t ∈ [t j, t j+1], j = 0, ...,m−1, we deduce

H(t) ·η j = (H(t)−H(t j)) ·η j +H(t j) ·η j ≥−|H(t)−H(t j)|+ |H(t j)|

≥ −L|t− t j|+ |H(t j)| ≥ −L
T
m
+ |H(t j)|, (48)

and, since |H(t)| ≤
∣∣H(t)−H(t j)

∣∣+ |H(t j)|,
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∣∣≥ |H(t)|− |H(t)−H(t j)| ≥ |H(t)|−L|t− t j| ≥ |H(t)|−L

T
m
. (49)

From (48) and (49), if we choose the uniform partition with m ≥ 2LT
H0(1−S∗)

, where
we recall that H0 = min

t∈[0,T ]
|H(t)|, we obtain the conclusion, that is,

H(t) ·
H(t j)

|H(t j)|
≥ |H(t)|−2L

T
m
≥ S∗|H(t)|, ∀t ∈ [t j, t j+1], ∀ j = 0, . . . ,m−1.

ut
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