13 research outputs found

    Super-reducing conditions in ancient and modern volcanic systems: sources and behaviour of carbon-rich fluids in the lithospheric mantle

    No full text
    International audienceOxygen fugacity (ƒO2) is a key parameter of Earth's mantle, because it controls the speciation of the fluids migrating at depth; a major question is whether the sublithospheric mantle is metal-saturated, keeping ƒO2 near the Iron-Wustite (IW) buffer reaction. Cretaceous basaltic pyroclastic rocks on Mt. Carmel, Israel erupted in an intraplate environment with a thin, hot lithosphere. They contain abundant aggregates of hopper-shaped crystals of Ti-rich corundum, which have trapped melts with phenocryst assemblages (Ti2O3, SiC, TiC, silicides, native V) requiring extremely low ƒO2. These assemblages are interpreted to reflect interaction between basaltic melts and mantle-derived fluids dominated by CH4 + H2. Similar highly reduced assemblages are found associated with volcanism in a range of tectonic situations including subduction zones, major continental collisions, intraplate settings, craton margins and the cratons sampled by kimberlites. This distribution, and the worldwide similarity of δ13C in mantle-derived SiC and associated diamonds, suggest a widespread process, involving similar sources and independent of tectonic setting. We suggest that the common factor is the ascent of abiotic (CH4 + H2) fluids from the sublithospheric mantle; this would imply that much of the mantle is metal-saturated, consistent with observations of metallic inclusions in sublithospheric diamonds (e.g. Smith et al. 2016). Such fluids, perhaps carried in rapidly ascending deep-seated magmas, could penetrate high up into a depleted cratonic root, establishing the observed trend of decreasing ƒO2 with depth (e.g. Yaxley et al. in Lithos 140:142-151, 2012). However, repeated metasomatism (associated with the intrusion of silicate melts) will raise the FeO content near the base of the craton over time, developing a carapace of oxidizing material that would prevent the rise of CH4-rich fluids into higher levels of the subcontinental lithospheric mantle (SCLM). Oxidation of these fluids would release CO2 and H2O to drive metasomatism and low-degree melting both in the carapace and higher in the SCLM. This model can explain the genesis of cratonic diamonds from both reduced and oxidized fluids, the existence of SiC as inclusions in diamonds, and the abundance of SiC in some kimberlites. It should encourage further study of the fine fractions of heavy-mineral concentrates from all types of explosive volcanism

    Nitrogen under Super-Reducing Conditions: Ti Oxynitride Melts in Xenolithic Corundum Aggregates from Mt Carmel (N. Israel)

    No full text
    Titanium oxynitrides (Ti(N,O,C)) are abundant in xenolithic corundum aggregates in pyroclastic ejecta of Cretaceous volcanoes on Mount Carmel, northern Israel. Petrographic observations indicate that most of these nitrides existed as melts, immiscible with coexisting silicate and Fe-Ti-C silicide melts; some nitrides may also have crystallized directly from the silicide melts. The TiN phase shows a wide range of solid solution, taking up 0–10 wt% carbon and 1.7–17 wt% oxygen; these have crystallized in the halite (fcc) structure common to synthetic and natural TiN. Nitrides coexisting with silicide melts have higher C/O than those coexisting with silicate melts. Analyses with no carbon fall along the TiN–TiO join in the Ti–N–O phase space, implying that their Ti is a mixture of Ti3+ and Ti2+, while those with 1–3 at.% C appear to be solid solutions between TiN and Ti0.75O. Analyses with >10 at% C have higher Ti2+/Ti3+, reflecting a decrease in fO2. Oxygen fugacity was 6 to 8 log units below the iron–wüstite buffer, at or below the Ti2O3–TiO buffer. These relationships and coexisting silicide phases indicate temperatures of 1400–1100 °C. Ti oxynitrides are probably locally abundant in the upper mantle, especially in the presence of CH4–H2 fluids derived from the deeper metal-saturated mantle

    Timing the tectonic mingling of ultramafic rocks and metasediments in the southern section of the coastal accretionary complex of central Chile

    No full text
    <p>Uranium-lead ages are reported for zircons from ultramafic bodies and metamorphic host rocks of the Western Series that outcrop at La Cabaña, in the southern section of the coastal accretionary complex of central Chile. Metasedimentary mica schists hosting the ultramafic bodies contain a main detrital zircon population of Devonian age (365–380 Ma) clustering around ~368 Ma, differing significantly from neighbouring areas where Devonian zircons are scarce. Zircons from the metasomatic reaction zones (albitites and chloritites), formed during the emplacement and alteration of the ultramafic bodies, are mainly Ordovician (~478 Ma) and lack Devonian zircons, resembling a typical detrital zircon pattern from other locations in the Western Series. Zircons from the chloritite reaction zone of the Lavanderos serpentinite, the easternmost ultramafic body in La Cabaña, are in textural equilibrium with metamorphic ilmenite. Some of these zircons yield an average age of 283.4 ± 7 Ma (<i>n</i> = 6) which is identical, within error, to a previously reported K-Ar fuchsite cooling age of 282 ± 6 Ma from the reaction zone. Most zircons extracted from chromitite boulders have euhedral oscillatory-zoned growth patterns with a similar range of ages than those reported for the Western Series (324–1090 Ma; <i>n</i> = 12), except for two zircons with cloudy appearance and high U/Th ratios which yielded an average age of 285.5 ± 7 Ma. The presence of Early Permian zircons (~280–290 Ma) in all studied rocks suggests remobilization of Zr, possibly triggered by metasomatic fluids released during the disequilibrium reaction associated with the tectonic emplacement of the ultramafic rocks into the metasedimentary rock. Simultaneously with the formation of metasomatic zircons, Palaeozoic and Mesoproterozoic zircons from the metasedimentary rocks were mechanically incorporated into the ultramafic rocks, thus providing a record of the timing of crustal emplacement of the ultramafic rocks into the accretionary complex.</p

    Timing the tectonic mingling of ultramafic rocks and metasediments in the southern section of the coastal accretionary complex of central Chile

    No full text
    Uranium-lead ages are reported for zircons from ultramafic bodies and metamorphic host rocks of the Western Series that outcrop at La Cabaña, in the southern section of the coastal accretionary complex of central Chile. Metasedimentary mica schists hosting the ultramafic bodies contain a main detrital zircon population of Devonian age (365–380 Ma) clustering around ~368 Ma, differing significantly from neighbouring areas where Devonian zircons are scarce. Zircons from the metasomatic reaction zones (albitites and chloritites), formed during the emplacement and alteration of the ultramafic bodies, are mainly Ordovician (~478 Ma) and lack Devonian zircons, resembling a typical detrital zircon pattern from other locations in the Western Series. Zircons from the chloritite reaction zone of the Lavanderos serpentinite, the easternmost ultramafic body in La Cabaña, are in textural equilibrium with metamorphic ilmenite. Some of these zircons yield an average age of 283.4 ± 7 Ma (n = 6) which is identical, within error, to a previously reported K-Ar fuchsite cooling age of 282 ± 6 Ma from the reaction zone. Most zircons extracted from chromitite boulders have euhedral oscillatory-zoned growth patterns with a similar range of ages than those reported for the Western Series (324–1090 Ma; n = 12), except for two zircons with cloudy appearance and high U/Th ratios which yielded an average age of 285.5 ± 7 Ma. The presence of Early Permian zircons (~280–290 Ma) in all studied rocks suggests remobilization of Zr, possibly triggered by metasomatic fluids released during the disequilibrium reaction associated with the tectonic emplacement of the ultramafic rocks into the metasedimentary rock. Simultaneously with the formation of metasomatic zircons, Palaeozoic and Mesoproterozoic zircons from the metasedimentary rocks were mechanically incorporated into the ultramafic rocks, thus providing a record of the timing of crustal emplacement of the ultramafic rocks into the accretionary complex

    Mantle recycling : transition zone metamorphism of Tibetan ophiolitic peridotites and its tectonic implications

    No full text
    Large peridotite massifs are scattered along the 1500 km length of the Yarlung–Zangbo Suture Zone (southern Tibet, China), the major suture between Asia and Greater India. Diamonds occur in the peridotites and chromitites of several massifs, together with an extensive suite of trace phases that indicate extremely low fO2 (SiC, nitrides, carbides, native elements) and/or ultrahigh pressures (UHP) (diamond, TiO2 II, coesite, possible stishovite). New physical and isotopic (C, N) studies of the diamonds indicate that they are natural, crystallized in a disequilibrium, high-T environment, and spent only a short time at mantle temperatures before exhumation and cooling. These constraints are difficult to reconcile with previous models for the history of the diamond-bearing rocks. Possible evidence for metamorphism in or near the upper part of the Transition Zone includes the following: (1) chromite (in disseminated, nodular and massive chromitites) containing exsolved pyroxenes and coesite, suggesting inversion from a high-P polymorph of chromite; (2) microstructural studies suggesting that the chromitites recrystallized from fine-grained, highly deformed mixtures of wadsleyite and an octahedral polymorph of chromite; (3) a new cubic Mg-silicate, with the space group of ringwoodite but an inverse-spinel structure (all Si in octahedral coordination); (4) harzburgites with coarsely vermicular symplectites of opx + Cr–Al spinel ± cpx; reconstructions suggest that these are the breakdown products of majoritic garnets, with estimated minimum pressures to > 13 GPa. Evidence for a shallow pre-metamorphic origin for the chromitites and peridotites includes the following: (1) trace-element data showing that the chromitites are typical of suprasubduction-zone (SSZ) chromitites formed by magma mixing or mingling, consistent with Hf-isotope data from magmatic (375 Ma) zircons in the chromitites; (2) the composition of the new cubic Mg-silicate, which suggests a low-P origin as antigorite, subsequently dehydrated; (3) the peridotites themselves, which carry the trace element signature of metasomatism in an SSZ environment, a signature that must have been imposed before the incorporation of the UHP and low-fO2 phases. A proposed P–T–t path involves the original formation of chromitites in mantle-wedge harzburgites, subduction of these harzburgites at c. 375 Ma, residence in the upper Transition Zone for >200 Myr, and rapid exhumation at c. 170–150 Ma or 130–120 Ma. Os-isotope data suggest that the subducted mantle consisted of previously depleted subcontinental lithosphere, dragged down by a subducting oceanic slab. Thermomechanical modeling shows that roll-back of a (much later) subducting slab would produce a high-velocity channelized upwelling that could exhume the buoyant harzburgites (and their chromitites) from the Transition Zone in < 10 Myr. This rapid upwelling, which may explain some characteristics of the diamonds, appears to have brought some massifs to the surface in forearc or back-arc basins, where they provided a basement for oceanic crust. This model can reconcile many apparently contradictory petrological and geological datasets. It also defines an important, previously unrecognized geodynamic process that may have operated along other large suture zones such as the Urals

    Multistudy Research Operations in the ICU: An Interprofessional Pandemic-Informed Approach

    No full text
    OBJECTIVES:. Proliferation of COVID-19 research underscored the need for improved awareness among investigators, research staff and bedside clinicians of the operational details of clinical studies. The objective was to describe the genesis, goals, participation, procedures, and outcomes of two research operations committees in an academic ICU during the COVID-19 pandemic. DESIGN:. Two-phase, single-center multistudy cohort. SETTING:. University-affiliated ICU in Hamilton, ON, Canada. PATIENTS:. Adult patients in the ICU, medical stepdown unit, or COVID-19 ward. INTERVENTIONS:. None. MEASUREMENTS AND MAIN RESULTS:. An interprofessional COVID Collaborative was convened at the pandemic onset within our department, to proactively coordinate studies, help navigate multiple authentic consent encounters by different research staff, and determine which studies would be suitable for coenrollment. From March 2020 to May 2021, five non-COVID trials continued, two were paused then restarted, and five were launched. Over 15 months, 161 patients were involved in 215 trial enrollments, 110 (51.1%) of which were into a COVID treatment trial. The overall informed consent rate (proportion agreed of those eligible and approached including a priori and deferred consent models) was 83% (215/259). The informed consent rate was lower for COVID-19 trials (110/142, 77.5%) than other trials (105/117, 89.7%; p = 0.01). Patients with COVID-19 were significantly more likely to be coenrolled in two or more studies (29/77, 37.7%) compared with other patients (13/84, 15.5%; p = 0.002). Review items for each new study were collated, refined, and evolved into a modifiable checklist template to set up each study for success. The COVID Collaborative expanded to a more formal Department of Critical Care Research Operations Committee in June 2021, supporting sustainable research operations during and beyond the pandemic. CONCLUSIONS:. Structured coordination and increased communication about research operations among diverse research stakeholders cultivated a sense of shared purpose and enhanced the integrity of clinical research operations
    corecore