9 research outputs found

    Fluorescent labeling in semi-solid medium for selection of mammalian cells secreting high-levels of recombinant proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite the powerful impact in recent years of gene expression markers like the green fluorescent protein (GFP) to link the expression of recombinant protein for selection of high producers, there is a strong incentive to develop rapid and efficient methods for isolating mammalian cell clones secreting high levels of marker-free recombinant proteins. Recently, a method combining cell colony growth in methylcellulose-based medium with detection by a fluorescently labeled secondary antibody or antigen has shown promise for the selection of Chinese Hamster Ovary (CHO) cell lines secreting recombinant antibodies. Here we report an extension of this method referred to as fluorescent labeling in semi-solid medium (FLSSM) to detect recombinant proteins significantly smaller than antibodies, such as IGF-E5, a 25 kDa insulin-like growth factor derivative.</p> <p>Results</p> <p>CHO cell clones, expressing 300 μg/ml IGF-E5 in batch culture, were isolated more easily and quickly compared to the classic limiting dilution method. The intensity of the detected fluorescent signal was found to be proportional to the amount of IGF-E5 secreted, thus allowing the highest producers in the population to be identified and picked. CHO clones producing up to 9.5 μg/ml of Tissue-Plasminogen Activator (tPA, 67 kDa) were also generated using FLSSM. In addition, IGF-E5 high-producers were isolated from 293SF transfectants, showing that cell selection in semi-solid medium is not limited to CHO and lymphoid cells. The best positive clones were collected with a micromanipulator as well as with an automated colony picker, thus demonstrating the method's high throughput potential.</p> <p>Conclusion</p> <p>FLSSM allows rapid visualization of the high secretors from transfected pools prior to picking, thus eliminating the tedious task of screening a high number of cell isolates. Because of its rapidity and its simplicity, FLSSM is a versatile method for the screening of high producers for research and industry.</p

    Critically Ill Patients with Visceral Nocardia Infection, France and Belgium, 2004-2023.

    Full text link
    peer reviewedWe studied 50 patients with invasive nocardiosis treated during 2004-2023 in intensive care centers in France and Belgium. Most (65%) died in the intensive care unit or in the year after admission. Nocardia infections should be included in the differential diagnoses for patients in the intensive care setting

    Response to PEEP in COVID-19 ARDS patients with and without extracorporeal membrane oxygenation. A multicenter case–control computed tomography study

    No full text
    Abstract Background PEEP selection in severe COVID-19 patients under extracorporeal membrane oxygenation (ECMO) is challenging as no study has assessed the alveolar recruitability in this setting. The aim of the study was to compare lung recruitability and the impact of PEEP on lung aeration in moderate and severe ARDS patients with or without ECMO, using computed tomography (CT). Methods We conducted a two-center prospective observational case–control study in adult COVID-19-related patients who had an indication for CT within 72 h of ARDS onset in non-ECMO patients or within 72 h after ECMO onset. Ninety-nine patients were included, of whom 24 had severe ARDS under ECMO, 59 severe ARDS without ECMO and 16 moderate ARDS. Results Non-inflated lung at PEEP 5 cmH 2 O was significantly greater in ECMO than in non-ECMO patients. Recruitment induced by increasing PEEP from 5 to 15 cmH 2 O was not significantly different between ECMO and non-ECMO patients, while PEEP-induced hyperinflation was significantly lower in the ECMO group and virtually nonexistent. The median [IQR] fraction of recruitable lung mass between PEEP 5 and 15 cmH 2 O was 6 [4–10]%. Total superimposed pressure at PEEP 5 cmH 2 O was significantly higher in ECMO patients and amounted to 12 [11–13] cmH 2 O. The hyperinflation-to-recruitment ratio (i.e., a trade-off index of the adverse effects and benefits of PEEP) was significantly lower in ECMO patients and was lower than one in 23 (96%) ECMO patients, 41 (69%) severe non-ECMO patients and 8 (50%) moderate ARDS patients. Compliance of the aerated lung at PEEP 5 cmH 2 O corrected for PEEP-induced recruitment (C BABY LUNG ) was significantly lower in ECMO patients than in non-ECMO patients and was linearly related to the logarithm of the hyperinflation-to-recruitment ratio. Conclusions Lung recruitability of COVID-19 pneumonia is not significantly different between ECMO and non-ECMO patients, with substantial interindividual variations. The balance between hyperinflation and recruitment induced by PEEP increase from 5 to 15 cmH 2 O appears favorable in virtually all ECMO patients, while this PEEP level is required to counteract compressive forces leading to lung collapse. C BABY LUNG is significantly lower in ECMO patients, independently of lung recruitability
    corecore