1,803 research outputs found

    Multi Path FTIR Agriculture Air Pollution Measurement System

    Get PDF
    This paper details the design and validation of a Multiple Path OP-FTIR system with elevation and radial scanning ability and demonstrates its capabilities to quantify and monitor gaseous ammonia emitted from agricultural facilities. The OP-FTIR system has a 500 m range (1000 m full path length) and allows 360° radial scan and 45° scan in elevation. To study large scale sources, two or more similar systems may be needed. For comparison purposes, we ran two similar but not identical OP-FTIR systems side-by-side in a controlled lab environment and in a series of field environments. We determined that in a controlled environment, the two systems can attain an NH3 agreement of 1- 3% at concentrations above 500 ppb. Due to the short path length (~10 m) in the lab, 500 ppb was the detection limit of the two systems. Path lengths in a field are much longer, allowing a lower detection limit. Average agreement in the field was 1-6%. This difference in agreement from the laboratory is likely due to the non-homogeneous distribution of the pollutant

    Dust formation in winds of long-period variables. V. The influence of micro-physical dust properties in carbon stars

    Get PDF
    We present self-consistent dynamical models for dust-driven winds of carbon-rich AGB stars. The models are based on the coupled system of frequency-dependent radiation hydrodynamics and time-dependent dust formation. We investigate in detail how the wind properties of the models are influenced by the micro-physical properties of the dust grains that are required by the description of grain formation. The choice of dust parameters is significant for the derived outflow velocity, the degree of condensation and the resulting mass loss rates of the models. In the transition region between models with and without mass loss the choice ofmicro-physical parameters turns out to be very significant for whether a particular set of stellar parameters will give rise to a dust-driven mass loss or not. We also calculate near-infrared colors to test how the dust parameters influence the observable properties of the models, however, at this point we do not attempt to fit particular stars.Comment: 13 pages, 8 figures, A&A in pres

    Pretransplant HLA typing revealed loss of heterozygosity in the major histocompatibility complex in a patient with acute myeloid leukemia

    Get PDF
    Introduction Chromosomal abnormalities are frequent events in hematological malignancies. The degree of HLA compatibility between donor and recipient in hematopoietic stem cell transplantation is critical. Purpose of the study In this report, we describe an acute myeloid leukemia case with loss of heterozygosity (LOH) encompassing the entire HLA. Materials and methods HLA molecular typing was performed on peripheral blood (PB) and buccal swabs (BS). Chromosomal microarray analysis (CMA) was performed using a whole genome platform. Results Typing results on PB sample collected during blast crisis demonstrated homozygosity at the -A, -B, -C, -DR, and -DQ loci. A BS sample demonstrated heterozygosity at all loci. A subsequent PB sample drawn after count recovery confirmed heterozygosity. The CMA performed on PB samples collected during and after blast crisis revealed a large terminal region of copy-neutral LOH involving chromosome region 6p25.3p21.31, spanning approximately 35.9 Mb. The results of the CMA assay on sample collected after count recovery did not demonstrate LOH. Conclusions LOH at the HLA gene locus may significantly influence the donor search resulting in mistakenly choosing homozygous donors. We recommend confirming the HLA typing of recipients with hematological malignancies when homozygosity is detected at any locus by using BS samples, or alternatively from PB when remission is achieved

    Developing reflective practice in teacher candidates through program coherence

    Get PDF
    In this study, we explored the role of reflection at three stages of preparation across a teacher education program. Reflection has long been considered an essential aspect of professional practice for teaching; however, reflection is often vague and undefined. Through an examination of the opportunities we provided for our students to reflect, and systematic analysis of the levels of reflection our students engaged in, we found that the development of reflective practices could be understood and aligned across a professional preparation program. Furthermore, we considered our own pedagogical practices related to modality, prompting, scaffolding, assignment structure, and feedback in our analysis of a variety of student reflection artifacts, in order to understand the potential impact of our own pedagogical decisions across the program. Findings suggest that the program provided modeling and structures for reflection early on, encouraged the inclusion of multiple perspectives in relation to professional practice, and supported a synthesis of student learning of theory and practice as preservice teachers approached program completion. This article offers reflection as a tool for exploring issues of professional growth across a continuum of development

    Developing reflective practice in teacher candidates through program coherence

    Get PDF
    In this study, we explored the role of reflection at three stages of preparation across a teacher education program. Reflection has long been considered an essential aspect of professional practice for teaching; however, reflection is often vague and undefined. Through an examination of the opportunities we provided for our students to reflect, and systematic analysis of the levels of reflection our students engaged in, we found that the development of reflective practices could be understood and aligned across a professional preparation program. Furthermore, we considered our own pedagogical practices related to modality, prompting, scaffolding, assignment structure, and feedback in our analysis of a variety of student reflection artifacts, in order to understand the potential impact of our own pedagogical decisions across the program. Findings suggest that the program provided modeling and structures for reflection early on, encouraged the inclusion of multiple perspectives in relation to professional practice, and supported a synthesis of student learning of theory and practice as preservice teachers approached program completion. This article offers reflection as a tool for exploring issues of professional growth across a continuum of development

    G92-1071 Ridge Plant Systems: Weed Control

    Get PDF
    Advantages and disadvantages of the ridge plant system, weed control before and at planting and economics of the system are discussed. Ridge planting combines tillage and herbicides to achieve improved weed control in row crops. Crop seed is planted into ridges formed during cultivation and/or ditching of the previous crop. In ridge planting, the planter follows the old row and ridge clearing sweeps or disks move the surface soil, residue and much of the weed seed out of the row. Weed seeds are deposited between the rows where, upon germination, they can be controlled with cultivation. Two cultivations are generally used for weed control. The first cultivation loosens the soil and the second rebuilds the ridge. The ridge plant system is well suited to furrow-irrigationd crops. It also works well with dryland crops or those under center pivot irrigation. On furrow irrigationd land, corn or sorghum stalks may need to be shredded to assist in decomposition and hence irrigation because crop residue slows water advance in the furrow. Slowing the water may be a benefit, however, on soils which have a low water intake rate. With center pivot and dryland acres the need for shredding depends on how much residue the cultivator can handle

    Therapeutic administration of Tregitope-Human Albumin Fusion with Insulin Peptides to promote Antigen-Specific Adaptive Tolerance Induction.

    Get PDF
    Type 1 Diabetes (T1D) is an autoimmune disease that is associated with effector T cell (Teff) destruction of insulin-producing pancreatic beta-islet cells. Among the therapies being evaluated for T1D is the restoration of regulatory T cell (Treg) activity, specifically directed toward down-modulation of beta-islet antigen-specific T effector cells. This is also known as antigen-specific adaptive tolerance induction for T1D (T1D ASATI). Tregitopes (T regulatory cell epitopes) are natural T cell epitopes derived from immunoglobulin G (IgG) that were identified in 2008 and have been evaluated in several autoimmune disease models. In the T1D ASATI studies presented here, Tregitope peptides were administered to non-obese diabetic (NOD) mice at the onset of diabetes within two clinically-relevant delivery systems (liposomes and in human serum albumin [HSA]-fusion products) in combination with preproinsulin (PPI) target antigen peptides. The combination of Tregitope-albumin fusions and PPI peptides reduced the incidence of severe diabetes and reversed mild diabetes, over 49 days of treatment and observation. Combining HSA-Tregitope fusions with PPI peptides is a promising ASATI approach for therapy of T1D

    G92-1071 Ridge Plant Systems: Weed Control

    Get PDF
    Advantages and disadvantages of the ridge plant system, weed control before and at planting and economics of the system are discussed. Ridge planting combines tillage and herbicides to achieve improved weed control in row crops. Crop seed is planted into ridges formed during cultivation and/or ditching of the previous crop. In ridge planting, the planter follows the old row and ridge clearing sweeps or disks move the surface soil, residue and much of the weed seed out of the row. Weed seeds are deposited between the rows where, upon germination, they can be controlled with cultivation. Two cultivations are generally used for weed control. The first cultivation loosens the soil and the second rebuilds the ridge. The ridge plant system is well suited to furrow-irrigationd crops. It also works well with dryland crops or those under center pivot irrigation. On furrow irrigationd land, corn or sorghum stalks may need to be shredded to assist in decomposition and hence irrigation because crop residue slows water advance in the furrow. Slowing the water may be a benefit, however, on soils which have a low water intake rate. With center pivot and dryland acres the need for shredding depends on how much residue the cultivator can handle

    Particulate-Matter Emission Estimates from Agricultural Spring-Tillage Operations Using LIDAR and Inverse Modeling

    Get PDF
    Particulate-matter (PM) emissions from a typical spring agricultural tillage sequence and a strip–till conservation tillage sequence in California’s San Joaquin Valley were estimated to calculate the emissions control efficiency (η) of the strip–till conservation management practice (CMP). Filter-based PM samplers, PM-calibrated optical particle counters (OPCs), and a PM-calibrated light detection and ranging (LIDAR) system were used to monitored upwind and downwind PM concentrations during May and June 2008. Emission rates were estimated through inverse modeling coupled with the filter and OPC measurements and through applying a mass balance to the PM concentrations derived from LIDAR data. Sampling irregularities and errors prevented the estimation of emissions from 42% of the sample periods based on filter samples. OPC and LIDAR datasets were sufficiently complete to estimate emissions and the strip–till CMP η, which were ∼90% for all size fractions in both datasets. Tillage time was also reduced by 84%. Calculated emissions for some operations were within the range of values found in published studies, while other estimates were significantly higher than literature values. The results demonstrate that both PM emissions and tillage time may be reduced by an order of magnitude through the use of a strip–till conservation tillage CMP when compared to spring tillage activities
    • …
    corecore