31 research outputs found

    Regulace sestřihu pre-mRNA v S. cerevisiae: kooperace RNA a proteinů.

    Get PDF
    Ondřej Gahura, PhD Thesis 2011 Regulation of pre-mRNA splicing in S. cerevisiae: where RNA cooperates with proteins Abstract Removal of introns from protein coding transcripts occurs in two splicing reactions catalyzed by a large nuclear complex, spliceosome. The spliceosome is an extremely intricate and dynamic machine, wherein contributions of small RNA molecules and multiple proteins are coordinated to meet the requirements of absolute precision and high flexibility. For an intimate understanding of pre-mRNA splicing, it is necessary to unravel roles of individual components and to dissect the partial mechanisms. In the first part of this work, we describe the role of the Prp45 splicing factor in Saccharomyces cerevisiae. Mapping of genetic interactions of a conditionally lethal allele prp45(1-169) suggests a relationship of Prp45 to the NTC complex and to the second transesterification. Two-hybrid assay and purification of spliceosomal complexes reveal a contribution of the Prp45 C-terminus in the Prp22 helicase recruitment and/or regulation. Numerous experiments with reporter substrates document the need of Prp45 for the efficient splicing of a specific subset of introns. Our observations suggest that the function of Prp45 in splicing is conserved in evolution. The second part is devoted to the role of...Ondřej Gahura, Dizertační práce 2011 Regulace sestřihu pre-mRNA v S. cerevisiae: kooperace RNA a proteinů Abstrakt Odstraňování intronů z transkriptů probíhá prostřednictvím sestřihu v reakci katalyzované velkým jaderným komplexem - spliceosomem. Sestřih je nesmírně komplikovaný a dynamický proces, v němž koordinované fungování pěti malých molekul RNA a řady proteinů zajišťuje splnění požadavků na extrémní přesnost a flexibilitu. Pro důkladné pochopení sestřihu pre-mRNA je nezbytné rozklíčovat role jednotlivých komponent spliceosomu a porozumět všem dílčím mechanismům. První část práce se zabývá rolí sestřihového faktoru Prp45 v kvasince Saccharomyces cerevisiae. Mapování genetických interakcí alely prp45(1-169) ukazuje na vztah mezi Prp45, NTC komplexem a druhým sestřihovým krokem. Analýza interakcí pomocí dvouhybridního systému a purifikace sestřihových komplexů dokladuje roli C-koncové části Prp45 v regulaci a/nebo vyvazování helikázy Prp22 do spliceosomu. Experimenty s reportérovými substráty prokazují, že Prp45 je vyžadován pro efektivní sestřih určité skupiny intronů. Naše pozorování podporují hypotézu, že role Prp45 v sestřihu je konzervována v evoluci. Druhá část práce je věnována studiu vlivusekundárních struktur intronů na identifikaci 3' sestřihových míst (3' splice site; 3'ss). Ukázali jsme, že...Department of Cell BiologyKatedra buněčné biologieFaculty of SciencePřírodovědecká fakult

    Causes and effects of loss of classical non-homologous end joining pathway in parasitic eukaryotes

    Get PDF
    We report frequent losses of components of the classical nonhomologous end joining pathway (C-NHEJ), one of the main eukaryotic tools for end joining repair of DNA double-strand breaks, in several lineages of parasitic protists. Moreover, we have identified a single lineage among trypanosomatid flagellates that has lost Ku70 and Ku80, the core C-NHEJ components, and accumulated numerous insertions in many protein-coding genes. We propose a correlation between these two phenomena and discuss the possible impact of the C-NHEJ loss on genome evolution and transition to the parasitic lifestyle

    Secondary structure is required for 3′ splice site recognition in yeast

    Get PDF
    Higher order RNA structures can mask splicing signals, loop out exons, or constitute riboswitches all of which contributes to the complexity of splicing regulation. We identified a G to A substitution between branch point (BP) and 3′ splice site (3′ss) of Saccharomyces cerevisiae COF1 intron, which dramatically impaired its splicing. RNA structure prediction and in-line probing showed that this mutation disrupted a stem in the BP-3′ss region. Analyses of various COF1 intron modifications revealed that the secondary structure brought about the reduction of BP to 3′ss distance and masked potential 3′ss. We demonstrated the same structural requisite for the splicing of UBC13 intron. Moreover, RNAfold predicted stable structures for almost all distant BP introns in S. cerevisiae and for selected examples in several other Saccharomycotina species. The employment of intramolecular structure to localize 3′ss for the second splicing step suggests the existence of pre-mRNA structure-based mechanism of 3′ss recognition

    Regulation of pre-mRNA splicing in S. cerevisiae: where RNA cooperates with proteins.

    No full text
    Ondřej Gahura, PhD Thesis 2011 Regulation of pre-mRNA splicing in S. cerevisiae: where RNA cooperates with proteins Abstract Removal of introns from protein coding transcripts occurs in two splicing reactions catalyzed by a large nuclear complex, spliceosome. The spliceosome is an extremely intricate and dynamic machine, wherein contributions of small RNA molecules and multiple proteins are coordinated to meet the requirements of absolute precision and high flexibility. For an intimate understanding of pre-mRNA splicing, it is necessary to unravel roles of individual components and to dissect the partial mechanisms. In the first part of this work, we describe the role of the Prp45 splicing factor in Saccharomyces cerevisiae. Mapping of genetic interactions of a conditionally lethal allele prp45(1-169) suggests a relationship of Prp45 to the NTC complex and to the second transesterification. Two-hybrid assay and purification of spliceosomal complexes reveal a contribution of the Prp45 C-terminus in the Prp22 helicase recruitment and/or regulation. Numerous experiments with reporter substrates document the need of Prp45 for the efficient splicing of a specific subset of introns. Our observations suggest that the function of Prp45 in splicing is conserved in evolution. The second part is devoted to the role of..

    Synthetic Lethal Interactions of the PRP45 Gene in Saccharomyces cerevisiae

    No full text
    Katedra buněčné biologieDepartment of Cell BiologyPřírodovědecká fakultaFaculty of Scienc

    Synthetic Lethal Interactions of the PRP45 Gene in Saccharomyces cerevisiae

    No full text
    Katedra buněčné biologieDepartment of Cell BiologyPřírodovědecká fakultaFaculty of Scienc
    corecore