516 research outputs found

    Optimizing Maximal Fat Oxidation Assessment by a Treadmill-Based Graded Exercise Protocol: When Should the Test End?

    Get PDF
    Maximal fat oxidation during exercise (MFO) and the exercise intensity eliciting MFO (Fatmax) are considered important factors related to metabolic health and performance. Numerous MFO and Fatmax data collection and analysis approaches have been applied, which may have influenced their estimation during an incremental graded exercise protocol. Despite the heterogeneity of protocols used, all studies consistently stopped the MFO and Fatmax test when the respiratory exchange ratio (RER) was 1.0. It remains unknown however whether reaching a RER of 1.0 is required to have an accurate, reliable, and valid measure of MFO and Fatmax. We aimed to investigate the RER at which MFO and Fatmax occurred in sedentary and trained healthy adults. A total of 166 sedentary adults aged between 18 and 65 years participated in the study. MFO and Fatmax were calculated by an incremental graded exercise protocol before and after two exercise-based interventions. Our findings suggest that a graded exercise protocol aiming to determine MFO and Fatmax could end when a RER = 0.93 is reached in sedentary healthy adults, and when a RER = 0.90 is reached in trained adults independently of sex, age, body weight status, or the Fatmax data analysis approach. In conclusion, we suggest reducing the RER from 1.0 to 0.95 to be sure that MFO is reached in outliers. This methodological consideration has important clinical implications, since it would allow to apply smaller workload increments and/or to extend the stage duration to attain the steady state, without increasing the test duration.This study was supported by the Spanish Ministry of Economy and Competitiveness via the Fondo de Investigación Sanitaria del Instituto de Salud Carlos III (PI13/01393), Retos de la Sociedad (DEP2016-79512-R) and European Regional Development Funds (ERDF), the Spanish Ministry of Education (FPU 13/04365, FPU14/04172), the Spanish Ministry of Education and Science (Red EXERNET DEP2005-00046), the Fundación Iberoamericana de Nutrición (FINUT), the Redes Temáticas de Investigación Cooperativa RETIC (Red SAMID RD16/0022), the AstraZeneca HealthCare Foundation, the University of Granada Plan Propio de Investigación 2016 – Excellence actions: Unit of Excellence on Exercise and Health (UCEES) – and Plan Propio de Investigación 2018 – Programa Contratos-Puente, and the Junta de Andalucía, Consejería de Conocimiento, Investigación y Universidades (ERDF: ref. SOMM17/6107/UGR)

    Editorial: Functional fitness/high intensity functional training for health and performance

    Get PDF
    Functional fitness training (FFT) is an emerging fitness trend that emphasizes functional, multi-joint movements, including aerobic (e.g., cycling, rowing, running) and strength exercises (e.g., weightlifting and derivatives: squat, snatch, clean and jerk, bench press, deadlift; bodyweight exercises: air squat, push-up, pull-up, muscle-up; plyometrics: box jumps, tuck ups) (Claudino et al., 2018; Feito et al., 2018). Researchers have shown that FFT may be not only suitable for professional athletes but also for populations with different fitness levels. Indeed, it is suggested that FFT elicits greater muscle recruitment than aerobic exercises alone, thereby improving both endurance and muscular strength and power (Bergeron et al., 2011; Claudino et al., 2018; Feito et al., 2018; Schlegel, 2020; Sharp et al., 2022). However, FFT units (i.e., workouts) are highly varied daily, and more research is needed to clarify its acute effects and its associated chronic training adaptations (Bergeron et al., 2011; Claudino et al., 2018; Feito et al., 2018; Schlegel, 2020; Sharp et al., 2022). Therefore, the aim of this Research Topic is to increase the knowledge of the evidence-based effects and adaptations of implementing FFT on health and performance in individuals with different biological conditions

    Effect of p-Synephrine on Fat Oxidation Rate during Exercise of Increasing Intensity in Healthy Active Women

    Get PDF
    p-Synephrine is the principal alkaloid of bitter orange (Citrus aurantium). Several recent investigations have found that the intake of 2-3 mg/kg of p-synephrine raises fat oxidation rate during exercise of low-to-moderate intensity. However, these investigations have been carried out only with samples of male participants or mixed men/women samples. Therefore, the aim of this investigation was to study the effect of p-synephrine intake on fat oxidation during exercise of increasing intensity in healthy women. Using a double-blind, randomized experiment, 18 healthy recreationally active women performed two identical exercise trials after the ingestion of (a) 3 mg/kg of p-synephrine and (b) 3 mg/kg of a placebo (cellulose). The exercise trials consisted of a ramp test (from 30 to 80% of maximal oxygen uptake; VO(2)max) on a cycle ergometer while substrate oxidation rates were measured at each workload by indirect calorimetry. In comparison to the placebo, the intake of p-synephrine increased resting tympanic temperature (36.1 +/- 0.5 vs. 36.4 +/- 0.4 degrees C p = 0.033, d = 0.87) with no effect on resting heart rate (p = 0.111) and systolic (p = 0.994) and diastolic blood pressure (p = 0.751). During exercise, there was no significant effect of p-synephrine on fat oxidation rate (F = 0.517; p = 0.484), carbohydrate oxidation rate (F = 0.730; p = 0.795), energy expenditure rate (F = 0.480; p = 0.833), heart rate (F = 4.269; p = 0.068) and participant's perceived exertion (F = 0.337; p = 0.580). The maximal rate of fat oxidation with placebo was 0.26 +/- 0.10 g/min and it was similar with p-synephrine (0.28 +/- 0.08 g/min, p = 0.449, d = 0.21). An acute intake of 3 mg/kg of p-synephrine before exercise did not modify energy expenditure and substrate oxidation during submaximal aerobic exercise in healthy active women. It is likely that the increase in resting tympanic temperature induced by p-synephrine hindered the effect of this substance on fat utilization during exercise in healthy active women.Francisco de Vitoria University UFV-18/202

    Does the Time of Day Play a Role in the Acute Effect of p-Synephrine on Fat Oxidation Rate during Exercise in Women? A Randomized, Crossover and Double-Blind Study

    Get PDF
    p-Synephrine is deemed a safe and effective substance to increase fat utilization during exercise of low-to-moderate intensity in men but not in women. Additionally, the existence of a diurnal variation in substrate utilization has been documented during exercise with enhanced fat oxidation in the evening compared with early morning. However, it remains unknown whether there is an interaction between the effect of p-synephrine and the time of the day on fat oxidation during exercise. This study aimed to evaluate the effect of the acute ingestion of 3 milligram of p-synephrine per kilogram of body mass (mg/kg) on fat oxidation during exercise of increasing intensity when the exercise is performed in the morning vs. the evening. Using a randomized, double-blind, placebo-controlled experimental design, 16 healthy and active women performed four identical exercise trials after the ingestion of 3 mg/kg of p-synephrine and 3 mg/kg of a placebo (cellulose) both in the morning (8-10 am) and in the evening (5-7 pm). In the exercise trials, the substances were ingested 60 min before an incremental test on a cycle ergometer with 3 min stages at workloads from 30 to 80% of maximal oxygen uptake (VO(2)max). Substrate oxidation rates were measured by indirect calorimetry. In each trial, the maximum rate of fat oxidation (MFO) and the intensity that elicited MFO (Fatmax) were measured. A two-way analysis of variance (time-of-the day x substance) was used to detect differences among the trials. With the placebo, MFO was 0.25 +/- 0.11 g/min in the morning and 0.24 +/- 0.07 g/min in the evening. With p-synephrine, MFO was 0.26 +/- 0.09 g/min in the morning and 0.21 +/- 0.07 g/min in the evening. There was no main effect of substance (p = 0.349), time of day (p = 0.186) and the substance x time of day (p = 0.365) on MFO. Additionally, Fatmax was reached at a similar exercise intensity with the placebo (41.33 +/- 8.34% VO(2)max in the morning and 44.38 +/- 7.37% VO(2)max in the evening) and with p-synephrine (43.33 +/- 7.24% VO(2)max in the morning and 45.00 +/- 7.43% VO(2)max in the evening), irrespective of the time of day with no main effect of substance (p = 0.633), time of day (p = 0.191), or interaction (p = 0.580). In summary, the acute intake of 3 mg/kg of p-synephrine before exercise did not increase MFO and Fatmax, independently of the time of day, in female athletes. This indicates that the time of day is not a factor explaining the lack of effectiveness of this substance to enhance fat oxidation during aerobic exercise in women.Francisco de Vitoria University, grant number UFV-18/202

    Factors Determining the Agreement between Aerobic Threshold and Point of Maximal Fat Oxidation: Follow-Up on a Systematic Review and Meta-Analysis on Association

    Get PDF
    Regular exercise at the intensity matching maximal fat oxidation (FATmax) has been proposed as a key element in both athletes and clinical populations when aiming to enhance the body’s ability to oxidize fat. In order to allow a more standardized and tailored training approach, the connection between FATmax and the individual aerobic thresholds (AerT) has been examined. Although recent findings strongly suggest that a relationship exists between these two intensities, correlation alone is not sufficient to confirm that the intensities necessarily coincide and that the error between the two measures is small. Thus, this systematic review and meta-analysis aim to examine the agreement levels between the exercise intensities matching FATmax and AerT by pooling limits of agreement in a function of three parameters: (i) the average difference, (ii) the average within-study variation, and (iii) the variation in bias across studies, and to examine the influence of clinical and methodological inter- and intra-study differences on agreement levels. This study was registered with PROSPERO (CRD42021239351) and ClinicalTrials (NCT03789045). PubMed and Google Scholar were searched for studies examining FATmax and AerT connection. Overall, 12 studies with forty-five effect sizes and a total of 774 subjects fulfilled the inclusion criteria. The ROBIS tool for risk of bias assessment was used to determine the quality of included studies. In conclusion, the overall 95% limits of agreement of the differences between FATmax and AerT exercise intensities were larger than the a priori determined acceptable agreement due to the large variance caused by clinical and methodological differences among the studies. Therefore, we recommend that future studies follow a strict standardization of data collection and analysis of FATmax- and AerT-related outcomes

    ¿Y nuestras reivindicaciones para cuándo? : la participación de lesbianas en el movimiento feminista (años 70 y 80)

    Get PDF
    corecore