12 research outputs found

    Is it still worth searching for lepton flavor violation in rare kaon decays?

    Full text link
    Prospective searches for lepton flavor violation (LFV) in rare kaon decays at the existing and future intermediate-energy accelerators are considered. The proposed studies are complementary to LFV searches in muon-decay experiments and offer a unique opportunity to probe models with approximately conserved fermion-generation quantum number with sensitivity superior to that in other processes. Consequently, new searches for LFV in kaon decays are an important and independent part of the general program of searches for lepton flavor violation in the final states with charged leptons.Comment: 30 pages, 10 figures. An extended version of the talk given at the Chicago Flavor Seminar, February 27, 2004. In the new version some misprints were corrected and some new data for LFV-processes were added. The main content of the paper was not changed. The paper is published in Yad. Fiz. 68, 1272 (2005

    Left-right symmetry at LHC and precise 1-loop low energy data

    Get PDF
    Despite many tests, even the Minimal Manifest Left-Right Symmetric Model (MLRSM) has never been ultimately confirmed or falsified. LHC gives a new possibility to test directly the most conservative version of left-right symmetric models at so far not reachable energy scales. If we take into account precise limits on the model which come from low energy processes, like the muon decay, possible LHC signals are strongly limited through the correlations of parameters among heavy neutrinos, heavy gauge bosons and heavy Higgs particles. To illustrate the situation in the context of LHC, we consider the "golden" process ppe+Npp \to e^+ N. For instance, in a case of degenerate heavy neutrinos and heavy Higgs masses at 15 TeV (in agreement with FCNC bounds) we get σ(ppe+N)>10\sigma(pp \to e^+ N)>10 fb at s=14\sqrt{s}=14 TeV which is consistent with muon decay data for a very limited W2W_2 masses in the range (3008 GeV, 3040 GeV). Without restrictions coming from the muon data, W2W_2 masses would be in the range (1.0 TeV, 3.5 TeV). Influence of heavy Higgs particles themselves on the considered LHC process is negligible (the same is true for the light, SM neutral Higgs scalar analog). In the paper decay modes of the right-handed heavy gauge bosons and heavy neutrinos are also discussed. Both scenarios with typical see-saw light-heavy neutrino mixings and the mixings which are independent of heavy neutrino masses are considered. In the second case heavy neutrino decays to the heavy charged gauge bosons not necessarily dominate over decay modes which include only light, SM-like particles.Comment: 16 pages, 10 figs, KL-KS and new ATLAS limits taken into accoun

    Rare Charm Decays in the Standard Model and Beyond

    Get PDF
    We perform a comprehensive study of a number of rare charm decays, incorporating the first evaluation of the QCD corrections to the short distance contributions, as well as examining the long range effects. For processes mediated by the cu+c\to u\ell^+\ell^- transitions, we show that sensitivity to short distance physics exists in kinematic regions away from the vector meson resonances that dominate the total rate. In particular, we find that Dπ+D\to\pi\ell^+\ell^- and Dρ+D\to\rho\ell^+\ell^- are sensitive to non-universal soft-breaking effects in the Minimal Supersymmetric Standard Model with R-parity conservation. We separately study the sensitivity of these modes to R-parity violating effects and derive new bounds on R-parity violating couplings. We also obtain predictions for these decays within extensions of the Standard Model, including extensions of the Higgs, gauge and fermion sectors, as well as models of dynamical electroweak symmetry breaking.Comment: 45 pages, typos fixed, discussions adde

    Technical Design Report for the PANDA Solenoid and Dipole Spectrometer Magnets

    Full text link
    This document is the Technical Design Report covering the two large spectrometer magnets of the PANDA detector set-up. It shows the conceptual design of the magnets and their anticipated performance. It precedes the tender and procurement of the magnets and, hence, is subject to possible modifications arising during this process.Comment: 10 pages, 14MB, accepted by FAIR STI in May 2009, editors: Inti Lehmann (chair), Andrea Bersani, Yuri Lobanov, Jost Luehning, Jerzy Smyrski, Technical Coordiantor: Lars Schmitt, Bernd Lewandowski (deputy), Spokespersons: Ulrich Wiedner, Paola Gianotti (deputy

    Physics Performance Report for PANDA: Strong Interaction Studies with Antiprotons

    Full text link
    To study fundamental questions of hadron and nuclear physics in interactions of antiprotons with nucleons and nuclei, the universal PANDA detector will be built. Gluonic excitations, the physics of strange and charm quarks and nucleon structure studies will be performed with unprecedented accuracy thereby allowing high-precision tests of the strong interaction. The proposed PANDA detector is a state-of-the art internal target detector at the HESR at FAIR allowing the detection and identification of neutral and charged particles generated within the relevant angular and energy range. This report presents a summary of the physics accessible at PANDA and what performance can be expected.Comment: 216 page

    Heavy-neutrino chirality enhancement of the decay K_L -> e#mu# in left-right symmetric models

    No full text
    Also numbered MZ-TH/94-22SIGLEAvailable from British Library Document Supply Centre- DSC:8053.4153(RAL--94-090) / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Heavy neutrino chirality enhancement of the decay K(L) ---> e mu in left-right symmetric models

    Get PDF
    We study the decay KL>eμK_L -> e\mu in minimal extensions of the Standard Model based on the gauge groups SU(2)LxU(1)YSU(2)_L x U(1)_Y and SU(2)RxSU(2)LxU(1)BLSU(2)_R x SU(2)_L x U(1)_{B-L}, in which heavy Majorana neutrinos are present. In SU(2)LxU(1)YSU(2)_L x U(1)_Y models with chiral neutral singlets, B(KL>eμ)B(K_L -> e\mu ) cannot be much larger than 5x10155 x 10^{-15} without violating other low-energy constraints. In SU(2)LxSU(2)RxU(1)BLSU(2)_L x SU(2)_R x U(1)_{B-L} models, we find that heavy-neutrino-chirality enhancements due to the presence of left-handed and right- handed currents can give rise to a branching ratio close to the present experimental limit B(KL>eμ)<3.3x1011B(K_L -> e \mu)< 3.3 x 10^{-11}.Comment: 16 pages (4 figs appended as a ps file), LaTeX, RAL/94-090 and MZ-TH/94-2
    corecore