45 research outputs found
Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments
Receptor endocytosis is a fundamental step in controlling the magnitude, duration, and nature of cell signaling events. Confluent endothelial cells are contact inhibited in their growth and respond poorly to the proliferative signals of vascular endothelial growth factor (VEGF). In a previous study, we found that the association of vascular endothelial cadherin (VEC) with VEGF receptor (VEGFR) type 2 contributes to density-dependent growth inhibition (Lampugnani, G.M., A. Zanetti, M. Corada, T. Takahashi, G. Balconi, F. Breviario, F. Orsenigo, A. Cattelino, R. Kemler, T.O. Daniel, and E. Dejana. 2003. J. Cell Biol. 161:793–804). In the present study, we describe the mechanism through which VEC reduces VEGFR-2 signaling. We found that VEGF induces the clathrin-dependent internalization of VEGFR-2. When VEC is absent or not engaged at junctions, VEGFR-2 is internalized more rapidly and remains in endosomal compartments for a longer time. Internalization does not terminate its signaling; instead, the internalized receptor is phosphorylated, codistributes with active phospholipase C–γ, and activates p44/42 mitogen-activated protein kinase phosphorylation and cell proliferation. Inhibition of VEGFR-2 internalization reestablishes the contact inhibition of cell growth, whereas silencing the junction-associated density-enhanced phosphatase-1/CD148 phosphatase restores VEGFR-2 internalization and signaling. Thus, VEC limits cell proliferation by retaining VEGFR-2 at the membrane and preventing its internalization into signaling compartments
Ultrastructural imaging reveals vascular remodeling in migraine patients
Migraine is a neurological disorder and one of the most common pain conditions worldwide. Despite its prevalence, the basic biology and underlying mechanisms contributing to the development of migraine are still poorly understood. It is still unclear, for instance, whether the vasculature, both extra and intracranial, plays a significant role in the generation of migraine pain. Neuroimaging data, indeed, have reported conflicting results on blood vessels abnormalities like vasodilation, while functional studies suggest that vessels dysfunction may extend beyond vasodilation. Here we combined light and electron microscopy imaging to investigate the fine structure of superficial temporal (STA) and occipital arteries (OA) from patients that underwent minimally invasive surgery for migraine. Using optical microscopy, we observed that both STA and OA vessels showed marked endothelial thickening and internal elastic lamina fragmentation. In the muscular layer, we found profound shape changes of vascular smooth muscle cells (VSMCs), abundant extracellular matrix, and the presence of clear extracellular vacuoles. The electron microscopy analysis confirmed putative VSMCs infiltrated within the intima layer and revealed a consistent shifting of VSMCs from contractile to a synthetically active phenotype. We also report the presence of (i) abundant extracellular vacuoles filled with fine granular material and membranes, (ii) multilamellar structures, (iii) endosome-like organelles, and (iv) bona fide extracellular vesicles in the matrix space surrounding synthetically active cells. As both the endothelial layer and VSMCs coordinate a variety of vascular functions, these results suggest that a significant vascular remodeling is occurring in STA and OA of migraine patients. Thus, this phenomenon may represent an important target for future investigation designed toward the development of new therapeutic approaches
Numb Is an Endocytic Protein
Numb is a protein that in Drosophila determines cell fate as a result of its asymmetric partitioning at mitosis. The function of Numb has been linked to its ability to bind and to biologically antagonize Notch, a membrane receptor that also specifies cell fate. The biochemical mechanisms underlying the action of Numb, however, are still largely unknown. The wide pattern of expression of Numb suggests a general function in cellular homeostasis that could be additional to, or part of, its action in fate determination. Such a function could be endocytosis, as suggested by the interaction of Numb with Eps15, a component of the endocytic machinery. Here, we demonstrate that Numb is an endocytic protein. We found that Numb localizes to endocytic organelles and is cotrafficked with internalizing receptors. Moreover, it associates with the appendage domain of α adaptin, a subunit of AP2, a major component of clathrin-coated pits. Finally, fragments of Numb act as dominant negatives on both constitutive and ligand-regulated receptor-mediated internalization, suggesting a general role for Numb in the endocytic process
Ultrastructural examination of lung “cryobiopsies” from a series of fatal COVID-19 cases hardly revealed infected cells
Ultrastructural analysis of autopsy samples from COVID-19 patients usually suffers from significant structural impairment possibly caused by the rather long latency between death of the patient and an appropriate sample fixation. To improve structural preservation of the tissue, we obtained samples from ventilated patients using a trans-bronchial “cryobiopsy” within 30 min after their death and fixed them immediately for electron microscopy. Samples of six COVID-19 patients with a documented histopathology were systematically investigated by thin section electron microscopy. The different samples and areas inspected revealed the ultrastructural correlates of the different phases of diffuse alveolar damage, including detachment of the alveolar epithelium, hyperplasia of type 2 cells, exudates, and accumulation of extracellular material, such as the hyaline membranes and fibrin. Macrophages and neutrophilic granulocytes were regularly detected. Structural integrity of endothelium was intact in regions where the alveolar epithelium was already detached. Aggregates of erythrocytes, leukocytes with fibrin, and thrombocytes were not observed. Coronavirus particles were only found in and around very few cells in one of the six patient samples. The type and origin of these cells could not be assessed although the overall structural preservation of the samples allowed the identification of pulmonary cell types. Hence, the observed alveolar damage is not associated with virus presence or structural impairment due to ongoing replication at later stages of the disease in fatal cases, which implies that the lung damage in these patients is at least propagated by alternative mechanisms, perhaps, an inappropriate immune or stress response.Peer Reviewe
Cooperative antitumor activities of carnosic acid and Trastuzumab in ERBB2+ breast cancer cells
Background: ERBB2 is overexpressed in up to 20\u201330% of human breast cancers (BCs), and it is associated with
aggressive disease. Trastuzumab (Tz), a humanized monoclonal antibody, improves the prognosis associated with
ERBB2-amplified BCs. However, the development of resistance remains a significant challenge. Carnosic acid
(CA) is a diterpene found in rosemary and sage, endowed with anticancer properties. In this in vitro study,
we have investigated whether Tz and CA have cooperative effects on cell survival of ERBB2 overexpressing
(ERBB2+) cells and whether CA might restore Tz sensitivity in Tz-resistant cells.
Methods: We have studied BC cell migration and survival upon CA and Tz treatment. In particular, migration
ability was assessed by transwell assay while cell survival was assessed by MTT assay. In addition, we have performed cell
cycle and apoptosis analysis by high-resolution DNA flow cytometry and annexin-V, resazurin and sytox blue staining by
flow cytometry, respectively. The expression of proteins involved in cell cycle progression, ERBB2 signaling
pathway, and autophagy was evaluated by immunoblot and immunofluorescence analysis. Cellular structures
relevant to the endosome/lysosome and autophagy pathways have been studied by immunofluorescence and
transmission electron microscopy.
Results: We report that, in ERBB2+ BC cells, CA reversibly enhances Tz inhibition of cell survival, cooperatively
inhibits cell migration and induces cell cycle arrest in G0/G1. These events are accompanied by ERBB2 downregulation,
deregulation of the PI3K/AKT/mTOR signaling pathway and up-regulation of both CDKN1A/p21WAF1
and CDKN1B/p27KIP1. Furthermore, we have demonstrated that CA impairs late autophagy and causes derangement of
the lysosomal compartment as shown by up-regulation of SQSTM1/p62 and ultrastructural analysis. Accordingly, we
have found that CA restores, at least in part, sensitivity to Tz in SKBR-3 Tz-resistant cell line.
Conclusions: Our data demonstrate the cooperation between CA and Tz in inhibiting cell migration and survival of
ERBB2+ BC cells that warrant further studies to establish if CA or CA derivatives may be useful in vivo in the treatment
of ERBB2+ cancers
Ultrastructural examination of lung "cryobiopsies" from a series of fatal COVID-19 cases hardly revealed infected cells
Ultrastructural analysis of autopsy samples from COVID-19 patients usually suffers from significant structural impairment possibly caused by the rather long latency between death of the patient and an appropriate sample fixation. To improve structural preservation of the tissue, we obtained samples from ventilated patients using a trans-bronchial "cryobiopsy" within 30 min after their death and fixed them immediately for electron microscopy. Samples of six COVID-19 patients with a documented histopathology were systematically investigated by thin section electron microscopy. The different samples and areas inspected revealed the ultrastructural correlates of the different phases of diffuse alveolar damage, including detachment of the alveolar epithelium, hyperplasia of type 2 cells, exudates, and accumulation of extracellular material, such as the hyaline membranes and fibrin. Macrophages and neutrophilic granulocytes were regularly detected. Structural integrity of endothelium was intact in regions where the alveolar epithelium was already detached. Aggregates of erythrocytes, leukocytes with fibrin, and thrombocytes were not observed. Coronavirus particles were only found in and around very few cells in one of the six patient samples. The type and origin of these cells could not be assessed although the overall structural preservation of the samples allowed the identification of pulmonary cell types. Hence, the observed alveolar damage is not associated with virus presence or structural impairment due to ongoing replication at later stages of the disease in fatal cases, which implies that the lung damage in these patients is at least propagated by alternative mechanisms, perhaps, an inappropriate immune or stress response
Pharmacological activation of autophagy favors the clearing of intracellular aggregates of misfolded prion protein peptide to prevent neuronal death
According to the "gain-of-toxicity mechanism", neuronal loss during cerebral proteinopathies is caused by accumulation of aggregation-prone conformers of misfolded cellular proteins, although it is still debated which aggregation state actually corresponds to the neurotoxic entity. Autophagy, originally described as a variant of programmed cell death, is now emerging as a crucial mechanism for cell survival in response to a variety of cell stressors, including nutrient deprivation, damage of cytoplasmic organelles, or accumulation of misfolded proteins. Impairment of autophagic flux in neurons often associates with neurodegeneration during cerebral amyloidosis, suggesting a role in clearing neurons from aggregation-prone misfolded proteins. Thus, autophagy may represent a target for innovative therapies. In this work, we show that alterations of autophagy progression occur in neurons following in vitro exposure to the amyloidogenic and neurotoxic prion protein-derived peptide PrP90-231. We report that the increase of autophagic flux represents a strategy adopted by neurons to survive the intracellular accumulation of misfolded PrP90-231. In particular, PrP90-231 internalization in A1 murine mesencephalic neurons occurs in acidic structures, showing electron microscopy hallmarks of autophagosomes and autophagolysosomes. However, these structures do not undergo resolution and accumulate in cytosol, suggesting that, in the presence of PrP90-231, autophagy is activated but its progression is impaired; the inability to clear PrP90-231 via autophagy induces cytotoxicity, causing impairment of lysosomal integrity and cytosolic diffusion of hydrolytic enzymes. Conversely, the induction of autophagy by pharmacological blockade of mTOR kinase or trophic factor deprivation restored autophagy resolution, reducing intracellular PrP90-231 accumulation and neuronal death. Taken together, these data indicate that PrP90-231 internalization induces an autophagic defensive response in A1 neurons, although incomplete and insufficient to grant survival; the pharmacological enhancement of this process exerts neuroprotection favoring the clearing of the internalized peptide and could represents a promising neuroprotective tool for neurodegenerative proteinopathies
Amyloid precursor protein and Presenilin1 interact with the adaptor GRB2 and modulate ERK 1,2 signaling.
The amyloid precursor protein (APP) and the presenilins 1 and 2 are genetically linked to the development of familial Alzheimer disease. APP is a single-pass transmembrane protein and precursor of fibrillar and toxic amyloid-beta peptides, which are considered responsible for Alzheimer disease neurodegeneration. Presenilins are multipass membrane proteins, involved in the enzymatic cleavage of APP and other signaling receptors and transducers. The role of APP and presenilins in Alzheimer disease development seems to be related to the formation of amyloid-beta peptides; however, their physiological function, reciprocal interaction, and molecular mechanisms leading to neurodegeneration are unclear. APP and presenilins are also involved in multiple interactions with intracellular proteins, the significance of which is under investigation. Among the different APP-interacting proteins, we focused our interest on the GRB2 adaptor protein, which connects cell surface receptors to intracellular signaling pathways. In this study we provide evidence by co-immunoprecipitation experiments, confocal and electron microscopy, and by fluorescence resonance energy transfer experiments that both APP and presenilin1 interact with GRB2 in vesicular structures at the centrosome of the cell. The final target for these interactions is ERK1,2, which is activated in mitotic centrosomes in a PS1- and APP-dependent manner. These data suggest that both APP and presenilin1 can be part of a common signaling pathway that regulates ERK1,2 and the cell cycle
Exosomes from astrocyte processes: Signaling to neurons
open13It is widely recognized that extracellular vesicles subserve non-classical signal transmission in the central nervous system. Here we assess if the astrocyte processes, that are recognized to play crucial roles in intercellular communication at the synapses and in neuron-astrocyte networks, could convey messages through extracellular vesicles. Our findings indicate, for the first time that freshly isolated astrocyte processes prepared from adult rat cerebral cortex, can indeed participate to signal transmission in central nervous system by releasing exosomes that by volume transmission might target near or longdistance sites. It is noteworthy that the exosomes released from the astrocyte processes proved ability to selectively target neurons. The astrocyte-derived exosomes were proven positive for neuroglobin, a protein functioning as neuroprotectant against cell insult; the possibility that exosomes might transfer neuroglobin to neurons would add a mechanism to the potential astrocytic neuroprotectant activity. Notably, the exosomes released from the processes of astrocytes maintained markers, which prove their parental astrocytic origin. This potentially allows the assessment of the cellular origin of exosomes that might be recovered from body fluids.openVenturini A.; Passalacqua M.; Pelassa S.; Pastorino F.; Tedesco M.; Cortese K.; Gagliani M.C.; Leo G.; Maura G.; Guidolin D.; Agnati L.F.; Marcoli M.; Cervetto C.Venturini, A.; Passalacqua, M.; Pelassa, S.; Pastorino, F.; Tedesco, M.; Cortese, K.; Gagliani, M. C.; Leo, G.; Maura, G.; Guidolin, D.; Agnati, L. F.; Marcoli, M.; Cervetto, C
Neurodegenerative Disease-Associated TDP-43 Fragments Are Extracellularly Secreted with CASA Complex Proteins
Extracellular vesicles (EVs) play a central role in neurodegenerative diseases (NDs) since they may either spread the pathology or contribute to the intracellular protein quality control (PQC) system for the cellular clearance of NDs-associated proteins. Here, we investigated the crosstalk between large (LVs) and small (SVs) EVs and PQC in the disposal of TDP-43 and its FTLD and ALS-associated C-terminal fragments (TDP-35 and TDP-25). By taking advantage of neuronal cells (NSC-34 cells), we demonstrated that both EVs types, but particularly LVs, contained TDP-43, TDP-35 and TDP-25. When the PQC system was inhibited, as it occurs in NDs, we found that TDP-35 and TDP-25 secretion via EVs increased. In line with this observation, we specifically detected TDP-35 in EVs derived from plasma of FTLD patients. Moreover, we demonstrated that both neuronal and plasma-derived EVs transported components of the chaperone-assisted selective autophagy (CASA) complex (HSP70, BAG3 and HSPB8). Neuronal EVs also contained the autophagy-related MAP1LC3B-II protein. Notably, we found that, under PQC inhibition, HSPB8, BAG3 and MAP1LC3B-II secretion paralleled that of TDP-43 species. Taken together, our data highlight the role of EVs, particularly of LVs, in the disposal of disease-associated TDP-43 species, and suggest a possible new role for the CASA complex in NDs