3,990 research outputs found
Laparoscopic versus open colorectal resection for cancer and polyps: A cost-effectiveness study
Methods: Participants were recruited in 2006-2007 in a district general hospital in the south of England; those with a diagnosis of cancer or polyps were included in the analysis. Quality of life data were collected using EQ-5D, on alternate days after surgery for 4 weeks. Costs per patient, from a National Health Service perspective (in British pounds, 2006) comprised the sum of operative, hospital, and community costs. Missing data were filled using multiple imputation methods. The difference in mean quality adjusted life years and costs between surgery groups were estimated simultaneously using a multivariate regression model applied to 20 imputed datasets. The probability that laparoscopic surgery is cost-effective compared to open surgery for a given societal willingness-to-pay threshold is illustrated using a cost-effectiveness acceptability curve
The proposed flatland radar
A flexible very high frequency (VHF) stratosphere-troposphere (ST) radar configured for meteorological research is to be constructed near Urbana, Illinois. Measurement of small vertical velocities associated with synoptic-scale meteorology can be performed. A large Doppler microwave radar (CHILL) is located a few km from the site of the proposed ST radar. Since the microwave radar can measure the location and velocity of hydrometeors and the VHF ST radar can measure clear (or cloudy) air velocities, simultaneous observations by these two radars of stratiform or convective weather systems would provide valuable meteorological information
Measurement of vertical velocity using clear-air Doppler radars
A new clear air Doppler radar was constructed, called the Flatland radar, in very flat terrain near Champaign-Urbana, Illinois. The radar wavelength is 6.02 m. The radar has been measuring vertical velocity every 153 s with a range resolution of 750 m almost continuously since March 2, 1987. The variance of vertical velocity at Flatland is usually quite small, comparable to the variance at radars located near rough terrain during periods of small background wind. The absence of orographic effects over very flat terrain suggests that clear air Doppler radars can be used to study vertical velocities due to other processes, including synoptic scale motions and propagating gravity waves. For example, near rough terrain the shape of frequency spectra changes drastically as the background wind increases. But at Flatland the shape at periods shorter than a few hours changes only slowly, consistent with the changes predicted by Doppler shifting of gravity wave spectra. Thus it appears that the short period fluctuations of vertical velocity at Flatland are alsmost entirely due to the propagating gravity waves
Challenges in Qualification of Thermal Protection Systems in Extreme Entry Environments
Planetary entry vehicles employ ablative TPS materials to shield the aeroshell from entry aeroheating environments. To ensure mission success, it must be demonstrated that the heat shield system, including local features such as seams, does not fail at conditions that are suitably margined beyond those expected in flight. Furthermore, its thermal response must be predictable, with acceptable fidelity, by computational tools used in heat shield design. Mission assurance is accomplished through a combination of ground testing and material response modelling. A material's robustness to failure is verified through arcjet testing while its thermal response is predicted by analytical tools that are verified against experimental data. Due to limitations in flight-like ground testing capability and lack of validated high-fidelity computational models, qualification of heat shield materials is often achieved by piecing together evidence from multiple ground tests and analytical simulations, none of which fully bound the flight conditions and vehicle configuration. Extreme heating environments (>2000 W/sq. cm heat flux and >2 atm pressure), experienced during entries at Venus, Saturn and Ice Giants, further stretch the current testing and modelling capabilities for applicable TPS materials. Fully-dense Carbon Phenolic was the material of choice for these applications; however, since heritage raw materials are no longer available, future uses of re-created Carbon Phenolic will require re-qualification. To address this sustainability challenge, NASA is developing a new dual-layer material based on 3D weaving technology called Heat shield for Extreme Entry Environments (HEEET). Regardless of TPS material, extreme environments pose additional certification challenges beyond what has been typical in recent NASA missions. Scope of this presentation: This presentation will give an overview of challenges faced in verifying TPS performance at extreme heating conditions. Examples include: (1) Bounding aeroheating parameters (heat flux, pressure, shear and enthalpy) in ground facilities. How to certify TPS if environments can't be bounded or aeroheating parameters can't be simultaneously achieved. (2) Higher uncertainties in ground test environments (facility calibration and analytical predictions) at extreme conditions. (3) Testing in flows similar to planetary atmosphere composition (H2/He for Gas and Ice Giants). (4) Test sample size limitations for qualifying seam designs. (5) Lack of computational tools capable of simulating all significant aspects of TPS performance (including initiation and propagation of failures). This presentation will provide recommendations on how the EDL community can address these challenges and mitigate some of the risks involved in flying TPS materials at extreme conditions. Examples include: (1) Dedicated activity to understanding TPS failure modes. Develop computational tools capable of modelling fluid interaction with material's thermostructural response. Validate these tools through failure testing. A better understanding of failure mechanisms may eliminate the need to fully bound all aeroheating parameters in ground testing. (2) Enhancements to current testing facilities to simulate flight-like ablation mechanism (ex. testing in Nitrogen at Ames Interaction Heating Facility to limit oxidation in favor of more sublimation). (3) Improved characterization of test conditions with new diagnostic methods and determination of environment uncertainty through rigorous statistical analysis of available data. (4) Design margin policies that are directly tied to uncertainties in ground test environments and modelling fidelit
Local dynamics of gap-junction-coupled interneuron networks
Interneurons coupled by both electrical gap-junctions (GJs) and chemical GABAergic synapses are major components of forebrain networks. However, their contributions to the generation of specific activity patterns, and their overall contributions to network function, remain poorly understood. Here we demonstrate, using computational methods, that the topological properties of interneuron networks can elicit a wide range of activity dynamics, and either prevent or permit local pattern formation. We systematically varied the topology of GJ and inhibitory chemical synapses within simulated networks, by changing connection types from local to random, and changing the total number of connections. As previously observed we found that randomly coupled GJs lead to globally synchronous activity. In contrast, we found that local GJ connectivity may govern the formation of highly spatially heterogeneous activity states. These states are inherently temporally unstable when the input is uniformly random, but can rapidly stabilize when the network detects correlations or asymmetries in the inputs. We show a correspondence between this feature of network activity and experimental observations of transient stabilization of striatal fast-spiking interneurons (FSIs), in electrophysiological recordings from rats performing a simple decision-making task. We suggest that local GJ coupling enables an active search-and-select function of striatal FSIs, which contributes to the overall role of cortical-basal ganglia circuits in decision-making.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85426/1/ph10_1_016015.pd
Effective health care for older people resident in care homes: the optimal study protocol for realist review
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.Background: Care homes in the UK rely on general practice for access to specialist medical and nursing care as well as referral to therapists and secondary care. Service delivery to care homes is highly variable in both quantity and quality. This variability is also evident in the commissioning and organisation of care home-specific services that range from the payment of incentives to general practitioners (GPs) to visit care homes, to the creation of care home specialist teams and outreach services run by geriatricians. No primary studies or systematic reviews have robustly evaluated the impact of these different approaches on organisation and resident-level outcomes. Our aim is to identify factors which may explain the perceived or demonstrated effectiveness of programmes to improve health-related outcomes in older people living in care homes. Methods/Design: A realist review approach will be used to develop a theoretical understanding of what works when, why and in what circumstances. Elements of service models of interest include those that focus on assessment and management of residents’ health, those that use strategies to encourage closer working between visiting health care providers and care home staff, and those that address system-wide issues about access to assessment and treatment. These will include studies on continence, dignity, and speech and language assessment as well as interventions to promote person centred dementia care, improve strength and mobility, and nutrition. The impact of these interventions and their different mechanisms will be considered in relation to five key outcomes: residents’ medication use, use of out of hours’ services, hospital admissions (including use of Accident and Emergency) and length of hospital stay, costs and user satisfaction. An iterative three-stage approach will be undertaken that is stakeholder-driven and optimises the knowledge and networks of the research team. Discussion: This realist review will explore why and for whom different approaches to providing health care to residents in care homes improves access to health care in the five areas of interest. It will inform commissioning decisions and be the basis for further research. This systematic review protocol is registered on the PROSPERO database reference number: CRD42014009112NIHR Health Services & Delivery Research Programme. Project number 11/1021/0
17β-Estradiol Potentiates the Reinstatement of Cocaine Seeking in Female Rats: Role of the Prelimbic Prefrontal Cortex and Cannabinoid Type-1 Receptors
Clinical observations imply that female cocaine addicts experience enhanced relapse vulnerability compared with males, an effect tied to elevated estrogen phases of the ovarian hormone cycle. Although estrogens can enhance drug-seeking behavior, they do not directly induce reinstatement on their own. To model this phenomenon, we tested whether an estrogen could augment drug-seeking behavior in response to an ordinarily subthreshold reinstatement trigger. Following cocaine self-administration and extinction, female rats were ovariectomized to isolate estrogen effects on reinstatement. Although neither peak proestrus levels of the primary estrogen 17β-estradiol (E2; 10 μg/kg, i.p., 1-h pretreatment) nor a subthreshold cocaine dose (1.25 mg/kg, i.p.) alone were sufficient to reinstate drug-seeking behavior, pretreatment with E2 potentiated reinstatement to the ordinarily subthreshold cocaine dose. Furthermore, E2 microinfusions revealed that E2 (5 μg/0.3 μl, 15-min pretreatment) acts directly within the prelimbic prefrontal cortex (PrL-PFC) to potentiate reinstatement. As E2 has been implicated in endocannabinoid mobilization, which can disinhibit PrL-PFC projection neurons, we investigated whether cannabinoid type-1 receptor (CB1R) activation is necessary for E2 to potentiate reinstatement. The CB1R antagonist AM251 (1 or 3 mg/kg, i.p., 30-min pretreatment) administered prior to E2 and cocaine suppressed reinstatement in a dose-dependent manner. Finally, PrL-PFC AM251 microinfusions (300 ng/side, 15-min pretreatment) also suppressed E2-potentiated reinstatement. Together, these results suggest that E2 can augment reactivity to an ordinarily subthreshold relapse trigger in a PrL-PFC CB1R activation-dependent manner
Measuring health related quality of life of care home residents, comparison of self-report with staff proxy responses for EQ-5D-5L and HowRu: protocol for assessing proxy reliability in care home outcome testing
Introduction
Research into interventions to improve health and wellbeing for older people living in care homes is increasingly common. Health-Related Quality of Life (HRQoL) is frequently used as an outcome measure but collecting both self-reported and proxy HRQoL measures is challenging in this setting. This study will investigate the reliability of UK care home staff as proxy respondents for the EQ-5D-5L and HowRu measures.
Methods and Analysis
This is a prospective cohort study of a sub-population of care home residents recruited to the larger Proactive Healthcare for Older People in Care Homes (PEACH) study. It will recruit residents ≥ 60 years across 24 care homes and not receiving short stay or respite care. The sample size is 160 participants. Resident and care home staff proxy EQ-5D-5L and HowRu responses will be collected monthly for three months. Weighted kappa statistics and intraclass correlation adjusted for clustering at the care home level will be used to measure agreement between resident and proxy responses. The extent to which staff variables (gender, age group, length of time caring, role, how well they know the resident, length of time working in care homes and in specialist gerontological practice) influence the level of agreement between self-reported and proxy responses will be considered using a multilevel mixed-effect regression model.
Ethics and Dissemination
The PEACH study protocol was reviewed by the UK Health Research Authority and University of Nottingham Research Ethics Committee and was determined to be a service development project. We will publish this study in a peer-reviewed journal with international readership and disseminate it through relevant national stakeholder networks and specialist societies
Grasshopper DCMD : an undergraduate electrophysiology lab for investigating single-unit responses to behaviorally-relevant stimuli
Author Posting. © Faculty for Undergraduate Neuroscience, 2017. This article is posted here by permission of Faculty for Undergraduate Neuroscience for personal use, not for redistribution. The definitive version was published in Journal of Undergraduate Neuroscience Education 15 (2017): A162-A173.Avoiding capture from a fast-approaching predator is an important survival skill shared by many animals. Investigating the neural circuits that give rise to this escape behavior can provide a tractable demonstration of systems-level neuroscience research for undergraduate laboratories. In this paper, we describe three related hands-on exercises using the grasshopper and affordable technology to bring neurophysiology, neuroethology, and neural computation to life and enhance student understanding and interest. We simplified a looming stimuli procedure using the Backyard Brains SpikerBox bioamplifier, an open-source and low-cost electrophysiology rig, to extracellularly record activity of the descending contralateral movement detector (DCMD) neuron from the grasshopper’s neck. The DCMD activity underlies the grasshopper's motor responses to looming monocular visual cues and can easily be recorded and analyzed on an open-source iOS oscilloscope app, Spike Recorder. Visual stimuli are presented to the grasshopper by this same mobile application allowing for synchronized recording of stimuli and neural activity. An in-app spike-sorting algorithm is described that allows a quick way for students to record, sort, and analyze their data at the bench. We also describe a way for students to export these data to other analysis tools. With the protocol described, students will be able to prepare the grasshopper, find and record from the DCMD neuron, and visualize the DCMD responses to quantitatively investigate the escape system by adjusting the speed and size of simulated approaching objects. We describe the results from 22 grasshoppers, where 50 of the 57 recording sessions (87.7%) had a reliable DCMD response. Finally, we field-tested our experiment in an undergraduate neuroscience laboratory and found that a majority of students (67%) could perform this exercise in one two-hour lab setting, and had an increase in interest for studying the neural systems that drive behavior.Funding for this project was supported by the National Institute of Mental Health Small Business Innovation Research grant #2R44MH093334: “Backyard Brains: Bringing Neurophysiology into Secondary Schools.
Area-preserving dynamics of a long slender finger by curvature: a test case for the globally conserved phase ordering
A long and slender finger can serve as a simple ``test bed'' for different
phase ordering models. In this work, the globally-conserved,
interface-controlled dynamics of a long finger is investigated, analytically
and numerically, in two dimensions. An important limit is considered when the
finger dynamics are reducible to the area-preserving motion by curvature. A
free boundary problem for the finger shape is formulated. An asymptotic
perturbation theory is developed that uses the finger aspect ratio as a small
parameter. The leading-order approximation is a modification of ``the Mullins
finger" (a well-known analytic solution) which width is allowed to slowly vary
with time. This time dependence is described, in the leading order, by an
exponential law with the characteristic time proportional to the (constant)
finger area. The subleading terms of the asymptotic theory are also calculated.
Finally, the finger dynamics is investigated numerically, employing the
Ginzburg-Landau equation with a global conservation law. The theory is in a
very good agreement with the numerical solution.Comment: 8 pages, 4 figures, Latex; corrected typo
- …