2,377 research outputs found

    Interactive specification of data displays

    Get PDF
    On-line graphical language for computer data displa

    A randomized placebo-controlled pilot study of the efficacy and safety of D-cycloserine in people with chronic back pain.

    Get PDF
    BACKGROUND: Few effective pharmacological treatment options exist for chronic back pain, the leading cause of disability in the US, and all are associated with significant adverse effects. OBJECTIVE: To determine the efficacy and safety of D-cycloserine, a partial agonist to the N-methyl-D-aspartate receptor, in the treatment of chronic low back pain. METHODS: A total of 41 participants with chronic back pain who met all inclusion and exclusion criteria were enrolled in a double-blind, placebo-controlled randomized pilot trial of D-cycloserine. Treatment was administered orally for six weeks at escalating daily doses of 100 mg, 200 mg, and 400 mg, each for two weeks. The primary outcome measure was back pain intensity using the Numeric Rating Scale (0-10). Secondary measures were back pain-related questionnaires: McGill Pain Questionnaire short form, painDETECT, PANAS, and BDI. The pre-specified analysis was a two-way repeated measures analysis of variance. RESULTS: A treatment difference was observed between groups treated with D-cycloserine and placebo at six weeks of 1.05 ± 3.1 units on the Numeric Rating Scale, with an effect size of 0.4 and p = 0.14. This trend of better chronic back pain relief with D-cycloserine was also observed in the secondary measures. No safety issues were seen. CONCLUSION: The difference in mean pain between the D-cycloserine and placebo groups did not reach statistical significance. However, a clinically meaningful effect size in the magnitude of pain relief was observed with a consistent pattern across multiple outcome measures with good safety, supporting further research into the effectiveness of D-cycloserine for chronic back pain

    The Subjective Dimension of a Bipolar Family Education/Support Group: A Sociology of Emotions Approach

    Get PDF
    This article reports on the predominant emotions experienced by members of an education/support group for the relatives and partners of individuals with bipolar manic-depression. Identified are the specific types of emotions experienced as well as the situational, definitional, and behavioral frameworks in which particular emotions or combinations of emotions were generated, experienced, interpreted, expressed, and managed. Special attention is focused on emotional uncertainty, mixed and fluctuating emotions, the erosion of positive by negative emotions, and emotional stalemates. In addition, the personal and social consequences of members\u27 adopting particular emotion management roles are examined. Finally, the article outlines the education/ support group contexts and processes through which members were able to normalize, alter, or reduce a number of particularly distressful emotions and create or reinforce specific positive emotions

    Inter-hemispheric linkages in climate change: paleo-perspectives for future climate change

    Get PDF
    The Pole-Equator-Pole (PEP) projects of the PANASH (Paleoclimates of the Northern and Southern Hemisphere) programme have significantly advanced our understanding of past climate change on a global basis and helped to integrate paleo-science across regions and research disciplines. PANASH science allows us to constrain predictions for future climate change and to contribute to the management of consequent environmental changes. We identify three broad areas where PEP science makes key contributions. 1. The pattern of global changes. Knowing the exact timing of glacial advances (synchronous or otherwise) during the last glaciation is critical to understanding interhemispheric links in climate. Work in PEPI demonstrated that the tropical Andes in South America were deglaciated earlier than the Northern Hemisphere (NH) and that an extended warming began there ca. 21 000 cal years BP. The general pattern is consistent with Antarctica and has now been replicated from studies in Southern Hemisphere (SH) regions of the PEPII transect. That significant deglaciation of SH alpine systems and Antarctica led deglaciation of NH ice sheets may reflect either i) faster response times in alpine systems and Antarctica, ii) regional moisture patterns that influenced glacier mass balance, or iii) a SH temperature forcing that led changes in the NH. This highlights the limitations of current understanding and the need for further fundamental paleoclimate research. 2. Changes in modes of operation of oscillatory climate systems. Work across all the PEP transects has led to the recognition that the El Niño Southern Oscillation (ENSO) phenomenon has changed markedly through time. It now appears that ENSO operated during the last glacial termination and during the early Holocene, but that precipitation teleconnections even within the Pacific Basin were turned down, or off. In the modern ENSO phenomenon both inter-annual and seven year periodicities are present, with the inter-annual signal dominant. Paleo-data demonstrate that the relative importance of the two periodicities changes through time, with longer periodicities dominant in the early Holocene. 3. The recognition of climate modulation of oscillatory systems by climate events. We examine the relationship of ENSO to a SH climate event, the Antarctic cold reversal (ACR), in the New Zealand region. We demonstrate that the onset of the ACR was associated with the apparent switching on of an ENSO signal in New Zealand. We infer that this related to enhanced zonal SW winds with the amplification of the pressure fields allowing an existing but weak ENSO signal to manifest itself. Teleconnections of this nature would be difficult to predict for future abrupt change as boundary conditions cannot readily be specified. Paleo-data are critical to predicting the teleconnections of future changes

    Detecting human impacts on the flora, fauna, and summer monsoon of Pleistocene Australia

    No full text
    International audienceAll of Australia's largest mammalian vertebrates became extinct 50 to 45 ka (thousand years ago), shortly after human colonization. Between 60 and 40 ka Australian climate was similar to present and not changing rapidly. Consequently, attention has turned toward plausible human mechanisms for the extinction, with proponents for over-hunting, ecosystem change, and introduced disease. To differentiate between these options we utilize isotopic tracers of diet preserved in eggshells of two large, flightless birds to track the status of ecosystems before and after human colonization. ?13C preserved in their eggshells monitor a bird's dietary intake in the weeks to months before egg-laying. More than 500 dated eggshells from central Australia of the Australian emu (Dromaius novaehollandiae), an opportunistic, dominantly herbivorous feeder, provide a continuous 140 kyr dietary ? 13C reconstruction. More than 350 dated eggshells from the same region of the heavier, extinct, giant bird Genyornis newtoni define its dietary intake from 140 ka until its extinction about 50 ka. Additional dietary records for both species were developed from two distant regions. Dromaius eggshell dietary ?13C reveals an unprecedented reduction in the bird's food resources about 50 ka, coeval in all three regions, suggesting conversion at that time of a tree/shrub savannah with occasionally rich grasslands to the modern desert scrub. We speculate that ecosystem collapse across the arid and semi-arid zones is a consequence of systematic burning by early humans. Genyornis diet everywhere is more restricted than in co-existing Dromaius, implying a more specialized feeding strategy. These data suggest that generalist feeders, such as Dromaius, were able to adapt to a changed vegetation regime, whereas more specialized feeders, such as Genyornis, became extinct. The altered vegetation may have also impacted Australian climate. Changes in the strength of climate feedbacks linked to vegetation and soil type (moisture recycling, surface roughness, albedo) may have weakened the penetration of monsoon moisture into the continental interior under the new ecosystem. Climate modeling suggests such a shift may have reduced monsoon rain in the interior by as much as 50%

    A dedicated greedy pursuit algorithm for sparse spectral representation of music sound

    Get PDF
    A dedicated algorithm for sparse spectral representation of music sound is presented. The goal is to enable the representation of a piece of music signal as a linear superposition of as few spectral components as possible, without affecting the quality of the reproduction. A representation of this nature is said to be sparse. In the present context sparsity is accomplished by greedy selection of the spectral components, from an overcomplete set called a dictionary. The proposed algorithm is tailored to be applied with trigonometric dictionaries. Its distinctive feature being that it avoids the need for the actual construction of the whole dictionary, by implementing the required operations via the fast Fourier transform. The achieved sparsity is theoretically equivalent to that rendered by the orthogonal matching pursuit (OMP) method. The contribution of the proposed dedicated implementation is to extend the applicability of the standard OMP algorithm, by reducing its storage and computational demands. The suitability of the approach for producing sparse spectral representation is illustrated by comparison with the traditional method, in the line of the short time Fourier transform, involving only the corresponding orthonormal trigonometric basis

    Inter-hemispheric linkages in climate change: Paleo-perspectives for future climate change

    Get PDF
    The Pole-Equator-Pole (PEP) projects of the PANASH (Paleoclimates of the Northern and Southern Hemisphere) programme have significantly advanced our understanding of past climate change on a global basis and helped to integrate paleo-science across regions and research disciplines. PANASH science allows us to constrain predictions for future climate change and to contribute to the management of consequent environmental changes. We identify three broad areas where PEP science makes key contributions. 1. The pattern of global changes. Knowing the exact timing of glacial advances (synchronous or otherwise) during the last glaciation is critical to understanding interhemispheric links in climate. Work in PEPI demonstrated that the tropical Andes in South America were deglaciated earlier than the Northern Hemisphere (NH) and that an extended warming began there ca. 21 000 cal years BP. The general pattern is consistent with Antarctica and has now been replicated from studies in Southern Hemisphere (SH) regions of the PEPII transect. That significant deglaciation of SH alpine systems and Antarctica led deglaciation of NH ice sheets may reflect either i) faster response times in alpine systems and Antarctica, ii) regional moisture patterns that influenced glacier mass balance, or iii) a SH temperature forcing that led changes in the NH. This highlights the limitations of current understanding and the need for further fundamental paleoclimate research. 2. Changes in modes of operation of oscillatory climate systems. Work across all the PEP transects has led to the recognition that the El Nino Southern Oscillation (ENSO) phenomenon has changed markedly through time. It now appears that ENSO operated during the last glacial termination and during the early Holocene, but that precipitation teleconnections even within the Pacific Basin were turned down, or off. In the modern ENSO phenomenon both inter-annual and seven year periodicities are present, with the inter-annual signal dominant. Paleo-data demonstrate that the relative importance of the two periodicities changes through time, with longer periodicities dominant in the early Holocene. 3. The recognition of climate modulation of oscillatory systems by climate events. We examine the relationship of ENSO to a SH climate event, the Antarctic cold reversal (ACR), in the New Zealand region. We demonstrate that the onset of the ACR was associated with the apparent switching on of an ENSO signal in New Zealand. We infer that this related to enhanced zonal SW winds with the amplification of the pressure fields allowing an existing but weak ENSO signal to manifest itself. Teleconnections of this nature would be difficult to predict for future abrupt change as boundary conditions cannot readily be specified. Paleo-data are critical to predicting the teleconnections of future changes
    corecore