167 research outputs found
Management of chemotherapy-associated febrile neutropenia
The development of febrile neutropenia during a course of chemotherapy is not only a life-threatening complication, it can also lead to a decision to reduce chemotherapy intensity in subsequent treatment cycles, thus putting patient outcomes at risk. Although there are strategies available for the primary prevention of febrile neutropenia, these are not widely used in the UK management of breast cancer. It is, therefore, paramount to have a well thought out and rigorously implemented care protocol for febrile neutropenia, involving patients, family/carers and health-care professionals in both primary and secondary care, to ensure early detection and effective management
Prevention of febrile neutropenia: use of prophylactic antibiotics
Febrile neutropenia (FN) causes significant morbidity and mortality in patients receiving cytotoxic chemotherapy and can lead to reduced chemotherapy dose intensity and increased overall treatment costs. Antibiotic prophylaxis reduces the incidence of FN. Recent research and meta-analyses confirm that prophylactic fluoroquinolones decrease FN and infection-related mortality in patients with acute leukaemia and those receiving high-dose chemotherapy. Fluoroquinolone prophylaxis also lowers the incidence of FN and all-cause mortality following the first cycle of myelosuppressive chemotherapy for solid tumours. Levofloxacin has been the agent studied most thoroughly in this context. Although there is no convincing evidence that colonisation of individuals with resistant organisms due to antibiotic prophylaxis increases FN or mortality, such concerns must be taken seriously and the use of prophylaxis should be limited responsibly for patients with the greatest chance of benefit. Fluoroquinolone prophylaxis is well tolerated and cost-effective and should be offered to patients receiving chemotherapy for haematological malignancies and high-dose chemotherapy for solid tumours in which prolonged (>7 days) neutropenia is expected. It should also be considered for those receiving chemotherapy for solid tumours and lymphomas during the first cycle of chemotherapy when grade 4 neutropenia is anticipated
Humoral serological response to the BNT162b2 vaccine is abrogated in lymphoma patients within the first 12 months following treatment with anti-CD2O antibodies
Patients with lymphoma, especially those treated with anti-CD20 monoclonal antibodies, suffer high COVID-19-associated morbidity and mortality. The goal of this study was to assess the ability of lymphoma patients to generate a sufficient humoral response after two injections of BNT162b2 Pfizer vaccine and to identify factors influencing the response. Antibody titers were measured with the SARS-CoV-2 IgG II Quant (Abbott ) assay in blood samples drawn from lymphoma patients 4 2 weeks after the second dose of vaccine. The cutoff for a positive response was set at 50 AU/mL. Positive serological responses were observed in 51% of the 162 patients enrolled in this cross-sectional study. In a multivariate analysis, an interval of 1 year after this therapy. The latter percentage was equal to that of patients never exposed to monoclonal antibodies. In conclusion, lymphoma patients, especially those recently treated with anti- CD20 monoclonal antibodies, fail to develop sufficient humoral response to BNT162b2 vaccine. While a serological response is not the only predictor of immunity, its low level could make this population more vulnerable to COVID-19, which implies the need for a different vaccination schedule for such patients
Platelet and Neutrophil Responses to Gram Positive Pathogens in Patients with Bacteremic Infection
BACKGROUND: Many Gram-positive pathogens aggregate and activate platelets in vitro and this has been proposed to contribute to virulence. Platelets can also form complexes with neutrophils but little is however known about platelet and platelet-neutrophil responses in bacterial infection. METHODOLOGY/PRINCIPAL FINDINGS: We added isolates of Gram-positive bacteria from 38 patients with a bacteremic infection to blood drawn from the same patient. Aggregometry and flow cytometry were used to assess platelet aggregation and to quantify activation of platelets, neutrophils, and platelet-neutrophils complexes (PNCs) induced by the bacteria. Fifteen healthy persons served as controls. Most isolates of Staphylococcus aureus, beta hemolytic streptococci, and Enterococcus faecalis induced aggregation of platelets from their respective hosts, whereas pneumococci failed to do so. S. aureus isolates induced platelet aggregation more rapidly in patients than in controls, whereas platelet activation by S. aureus was lower in patients than in controls. PNCs were more abundant in baseline samples from patients than in healthy controls and most bacterial isolates induced additional PNC formation and neutrophil activation. CONCLUSION/SIGNIFICANCE: We have demonstrated for the first time that bacteria isolated from patients with Gram-positive bacteremia can induce platelet activation and aggregation, PNC formation, and neutrophil activation in the same infected host. This underlines the significance of these interactions during infection, which could be a target for future therapies in sepsis
A prospective study of chemotherapy-induced febrile neutropenia in the South West London Cancer Network. Interpretation of study results in light of NCAG/NCEPOD findings
BACKGROUND: Chemotherapy-induced febrile neutropenia is a medical emergency complicating the treatment of many cancer patients. It is associated with considerable morbidity and mortality, as well as impacting on healthcare resources. METHODS: A prospective study of all cases of chemotherapy-induced febrile neutropenia in the South West London Cancer Network was conducted over a 4-month period. Factors including demographics, treatment history, management of febrile neutropenia and outcome were recorded. RESULTS AND CONCLUSION: Our results reflect those of the recent National Chemotherapy Advisory Group (NCEPOD, 2008)/National Confidential Enquiry into Patient Outcomes and Death reports (NCAG, 2009) and highlight the need for network-wide c inical care pathways to improve outcomes in this area, British Journal of Cancer (2011) 104, 407-412. doi:10.1038/sj.bjc.6606059 www.bjcancer.com Published online 21 December 2010 (C) 2011 Cancer Research U
Levofloxacin prophylaxis in patients with newly diagnosed myeloma (TEAMM): a multicentre, double-blind, placebo-controlled, randomised, phase 3 trial.
BACKGROUND: Myeloma causes profound immunodeficiency and recurrent, serious infections. Around 5500 new cases of myeloma are diagnosed per year in the UK, and a quarter of patients will have a serious infection within 3 months of diagnosis. We aimed to assess whether patients newly diagnosed with myeloma benefit from antibiotic prophylaxis to prevent infection, and to investigate the effect on antibiotic-resistant organism carriage and health care-associated infections in patients with newly diagnosed myeloma. METHODS: TEAMM was a prospective, multicentre, double-blind, placebo-controlled randomised trial in patients aged 21 years and older with newly diagnosed myeloma in 93 UK hospitals. All enrolled patients were within 14 days of starting active myeloma treatment. We randomly assigned patients (1:1) to levofloxacin or placebo with a computerised minimisation algorithm. Allocation was stratified by centre, estimated glomerular filtration rate, and intention to proceed to high-dose chemotherapy with autologous stem cell transplantation. All investigators, patients, laboratory, and trial co-ordination staff were masked to the treatment allocation. Patients were given 500 mg of levofloxacin (two 250 mg tablets), orally once daily for 12 weeks, or placebo tablets (two tablets, orally once daily for 12 weeks), with dose reduction according to estimated glomerular filtration rate every 4 weeks. Follow-up visits occurred every 4 weeks up to week 16, and at 1 year. The primary outcome was time to first febrile episode or death from all causes within the first 12 weeks of trial treatment. All randomised patients were included in an intention-to-treat analysis of the primary endpoint. This study is registered with the ISRCTN registry, number ISRCTN51731976, and the EU Clinical Trials Register, number 2011-000366-35. FINDINGS: Between Aug 15, 2012, and April 29, 2016, we enrolled and randomly assigned 977 patients to receive levofloxacin prophylaxis (489 patients) or placebo (488 patients). Median follow-up was 12 months (IQR 8-13). 95 (19%) first febrile episodes or deaths occurred in 489 patients in the levofloxacin group versus 134 (27%) in 488 patients in the placebo group (hazard ratio 0·66, 95% CI 0·51-0·86; p=0·0018. 597 serious adverse events were reported up to 16 weeks from the start of trial treatment (308 [52%] of which were in the levofloxacin group and 289 [48%] of which were in the placebo group). Serious adverse events were similar between the two groups except for five episodes (1%) of mostly reversible tendonitis in the levofloxacin group. INTERPRETATION: Addition of prophylactic levofloxacin to active myeloma treatment during the first 12 weeks of therapy significantly reduced febrile episodes and deaths compared with placebo without increasing health care-associated infections. These results suggest that prophylactic levofloxacin could be used for patients with newly diagnosed myeloma undergoing anti-myeloma therapy. FUNDING: UK National Institute for Health Research
- …