165 research outputs found

    Stator-Rotor Interaction in Axial Turbine: Flow Physics and Design Perspective

    Get PDF
    The stator-rotor interaction is an important issue in turbomachinery design when the highest performances are targeted. Different characters mark the interaction process in high-pressure or low-pressure turbines depending both on the blade height and on the Reynolds number. For small blade heights, being the stator secondary flows more important, a more complex interaction is found with respect to the high blades, where the stator blade wake dominates. In low-pressure turbines, the stator wake promotes the transition to turbulent boundary layer, allowing for an efficient application of ultra-high lift blades. First, a detailed discussion of the flow physics is proposed for high- and low-pressure turbines. Some off-design conditions are also commented. Then, a design perspective is given by discussing the effect of the axial gap between the stator and the rotor and by commenting the effects of three-dimensional design on the interaction

    Hot Streak Evolution in an Axial HP Turbine Stage

    Get PDF
    The paper presents the results of an experimental study on the evolution of hot streaks generated by gas turbine burners in an un-cooled high-pressure turbine stage. The prescribed hot streaks were streamwise directed and characterized by a 20% over-temperature with respect to the main flow at the stage inlet. The hot streak was injected in four different circumferential positions with respect to the stator blade. Detailed temperature and aerodynamic measurements upstream and downstream of the stage, as well as in-between the blade rows were performed. Measurements showed a severe temperature attenuation of the hot streaks within the stator cascade; some influence on the aerodynamic field was found, especially on the vorticity field, while the temperature pattern resulted severely altered depending on the injection position. Downstream of the rotor, the jet resulted spread over the pitch above midspan and more concentrated at hub. Rotor secondary flows were also enhanced by hot streaks

    Optimal Aerodynamic Design of a Transonic Centrifugal Turbine Stage for Organic Rankine Cycle Applications

    Get PDF
    This paper presents the results of the application of a shape-optimization technique to the design of the stator and the rotor of a centrifugal turbine conceived for Organic Rankine Cycle (ORC) applications. Centrifugal turbines have the potential to compete with axial or radial-inflow turbines in a relevant range of applications, and are now receiving scientific as well as industrial recognition. However, the non-conventional character of the centrifugal turbine layout, combined with the typical effects induced by the use of organic fluids, leads to challenging design difficulties. For this reason, the design of optimal blades for centrifugal ORC turbines demands the application of high-fidelity computational tools. In this work, the optimal aerodynamic design is achieved by applying a non-intrusive, gradient-free, CFD-based method implemented in the in-house software FORMA (Fluid-dynamic Opti-mizeR for turboMachinery Aerofoils), specifically developed for the shape optimization of turbomachinery profiles. FORMA was applied to optimize the shape of the stator and the rotor of a transonic centrifugal turbine stage, which exhibits a significant radial effect, high aerodynamic loading, and severe non-ideal gas effects. The optimization of the single blade rows allows improving considerably the stage performance, with respect to a baseline geometric configuration constructed with classical aerodynamic methods. Furthermore, time-resolved simulations of the coupled stator-rotor configuration shows that the optimization allows to reduce considerably the unsteady stator-rotor interaction and, thus, the aerodynamic forcing acting on the blades

    Dynamic Fire Danger Mapping from Satellite Imagery and Meteorological Forecast Data

    Get PDF
    Abstract This study aims at ascertaining if and how remote sensing data can improve fire danger estimation based on meteorological variables. With this goal in mind, a dynamic estimation of fire danger was performed using an approach based on the integration of satellite information within a comprehensive fire danger rating system. The performances obtained with and without using satellite data were carried out for fires that occurred during the fire season in the year 2003 in the Calabria region (southern Italy). This study area was selected, first, because it is highly representative of Mediterranean ecosystems and, second, because it is an interesting test case for wildfire occurrences within the Mediterranean basin. The results obtained have shown that the use of satellite data reduced efficiently the overestimated danger areas, thus improving at least by 10% the fire forecasting rate obtained without using satellite-based maps. Such findings can be directly extended to other similar Mediterranean ecosystems

    Preliminary characterization of an expanding flow of siloxane vapor MDM

    Get PDF
    The early experimental results on the characterization of expanding flows of siloxane vapor MDM (C8H24O2Si3, octamethyltrisiloxane) are presented. The measurements were performed on the Test Rig for Organic VApors (TROVA) at the CREA Laboratory of Politecnico di Milano. The TROVA test-rig was built in order to investigate the non-ideal compressible-fluid behavior of typical expanding flows occurring within organic Rankine cycles (ORC) turbine passages. The test rig implements a batch Rankine cycle where a planar converging-diverging nozzle replaces the turbine and represents a test section. Investigations related to both fields of non-ideal compressible-fluid dynamics fundamentals and turbomachinery are allowed. The nozzle can be operated with different working fluids and operating conditions aiming at measuring independently the pressure, the temperature and the velocity field and thus providing data to verify the thermo-fluid dynamic models adopted to predict the behavior of these flows. The limiting values of pressure and temperature are 50 bar and 400 °C respectively. The early measurements are performed along the nozzle axis, where an isentropic process is expected to occur. In particular, the results reported here refer to the nozzle operated in adapted conditions using the siloxane vapor MDM as working fluid in thermodynamic regions where mild to medium non-ideal compressible-fluid effects are present. Both total temperature and total pressure of the nozzle are measured upstream of the test section, while static pressure are measured along the nozzle axis. Schlieren visualizations are also carried out in order to complement the pressure measurement with information about the 2D density gradient field. The Laser Doppler Velocimetry technique is planned to be used in the future for velocity measurements. The measured flow field has also been interpreted by resorting to the quasi-one-dimensional theory and two dimensional CFD viscous calculation. In both cases state-of-the-art thermodynamic models were applied

    Hippocampal neuroplasticity and inflammation: relevance for multiple sclerosis

    Get PDF
    Cognitive impairment is very frequent during multiple sclerosis (MS), involving approximately 40–70% of the patients, with a profound impact on patient's life. It is now established that among the various central nervous system (CNS) structures involved during the course of MS, the hippocampus is particularly sensitive to the detrimental effects of neuroinflammation. Different studies demonstrated hippocampal involvement during MS, in association with depression and cognitive impairment, such as verbal and visuo-spatial memory deficits, even during the earlier phases of the disease. These cognitive alterations could represent the visible consequences of a hidden synaptic impairment. Indeed, neuronal and immune functions are intertwined and the immune system is able to modulate the efficacy of synaptic transmission and the induction of the main forms of synaptic plasticity, such as long term potentiation (LTP). Hippocampal synaptic plasticity has been studied during the last decades as the physiological basis of human learning and memory and its disruption can be associated with behavioral and cognitive abnormalities. The aim of the present work is to review the available evidence about the presence of hippocampal synaptic plasticity alterations in experimental models of MS, specifically during the course of experimental autoimmune encephalomyelitis (EAE) and to discuss their relevance with regard to human MS. Indeed, the failure of synapses to express plasticity during neuroinflammation could potentially lead to a progressive failure of the brain plastic reserve, possibly contributing to disability progression and cognitive impairment during MS

    Acercándose a la investigación

    Get PDF
    Nota de prensa en la que trata de impulsar el interés por la investigación. El Instituto de Salud Carlos III colabora en el programa “INVESTIGA I+D+i”, puesto en marcha por la Fundación San Patricio, para promover el interés de los adolescentes por la cienci

    Electrochemical Immunosensor for Detection of IgY in Food and Food Supplements

    Get PDF
    Immunoglobulin Y is a water-soluble protein present in high concentration in hen serum and egg yolk. IgY has applications in many fields, e.g., from food stuff to the mass production of antibodies. In this work, we have implemented an electrochemical immunosensor for IgY based on templated nanoelectrodes ensembles. IgY is captured by the templating polycarbonate and reacted with anti-IgY labeled with horseradish peroxidase. In the presence of H2O2 and methylene blue as the redox mediator, an electrocatalytic current is generated which scales with IgY concentration in the sample. After optimizing the extracting procedure, the immunosensor was applied for analysis of fresh eggs and food integrators. The data obtained with the biosensor were validated by SDS-PAGE and Western blot measurements

    ACTH-dependent Cushing's Syndrome: Diagnostic Pitfalls in Concomitant Non-secreting Pituitary Adenomas

    Get PDF
    Objectives: To describe the possible pitfalls in correctly interpreting clinical, radiological and biochemical findings in ACTH-dependent Cushing's syndrome. Methods: We describe a case of a pituitary adenoma visualized at MRI not correlated with an ACTH-dependent Cushing’s syndrome. Results: Radiological imaging and hormonal testing can be misleading in suspected pituitary ACTH-related Cushing’s syndrome. Conclusion: Correct interpretation of the initial clinical presentation can help in the proper diagnosis and treatment of ACTH-dependent Cushing’s syndrome
    • …
    corecore