303 research outputs found

    Neurophysiophenomenology – predicting emotional arousal from brain arousal in a virtual reality roller coaster

    Get PDF
    Arousal is a core affect constituted of both bodily and subjective states that prepares an agent to respond to events of the natural environment. While the peripheral physiological components of arousal have been examined also under naturalistic conditions, its neural correlates were suggested mainly on the basis of simplifed experimental designs.   We used virtual reality (VR) to present a highly immersive and contextually rich scenario of roller coaster rides to evoke naturalistic states of emotional arousal. Simultaneously, we recorded EEG to validate the suggested neural correlates of arousal in alpha frequency oscillations (8-12Hz) over temporo-parietal cortical areas. To fnd the complex link between these alpha components and the participants’ continuous subjective reports of arousal, we employed a set of complementary analytical methods coming from machine learning and deep learning

    The potential energy of a 40^{40}K Fermi gas in the BCS-BEC crossover

    Full text link
    We present a measurement of the potential energy of an ultracold trapped gas of 40^{40}K atoms in the BCS-BEC crossover and investigate the temperature dependence of this energy at a wide Feshbach resonance, where the gas is in the unitarity limit. In particular, we study the ratio of the potential energy in the region of the unitarity limit to that of a non-interacting gas, and in the T=0 limit we extract the universal many-body parameter β\beta. We find β=−0.54−0.12+0.05\beta = -0.54^{+0.05}_{-0.12}; this value is consistent with previous measurements using 6^{6}Li atoms and also with recent theory and Monte Carlo calculations. This result demonstrates the universality of ultracold Fermi gases in the strongly interacting regime

    Neural correlates of up-regulating positive emotions in fMRI and their link to affect in daily life

    Get PDF
    Emotion regulation is typically used to down-regulate negative or up-regulate positive emotions. While there is considerable evidence for the neural correlates of the former, less is known about the neural correlates of the latter—and how they are associated with emotion regulation and affect in daily life. Functional magnetic resonance imaging (fMRI) data were acquired from 63 healthy young participants (22 ± 1.6 years, 30 female), while they up-regulated their emotions to positive and neutral images or passively watched them. The same participants’ daily affect and emotion regulation behavior was measured using experience sampling over 10 days. Focusing on the ventral striatum (VS), previously associated with positive affective processing, we found increased activation during the up-regulation to both positive and neutral images. VS activation for the former positively correlated with between- and within-person differences in self-reported affective valence during fMRI but was not significantly associated with up-regulation in daily life. However, participants with lower daily affect showed a stronger association between changes in affect and activation in emotion-related (medial frontal and subcortical) regions—including the VS. These results support the involvement of the VS in up-regulating positive emotions and suggest a neurobehavioral link between emotion-related brain activation and daily affect

    Controller-free hand tracking for grab-and-place tasks in immersive virtual reality: Design elements and their empirical study

    Get PDF
    Hand tracking enables controller-free interaction with virtual environments, which can, compared to traditional handheld controllers, make virtual reality (VR) experiences more natural and immersive. As naturalness hinges on both technological and user-based features, fine-tuning the former while assessing the latter can be used to increase usability. For a grab-and-place use case in immersive VR, we compared a prototype of a camera-based hand tracking interface (Leap Motion) with customized design elements to the standard Leap Motion application programming interface (API) and a traditional controller solution (Oculus Touch). Usability was tested in 32 young healthy participants, whose performance was analyzed in terms of accuracy, speed and errors as well as subjective experience. We found higher performance and overall usability as well as overall preference for the handheld controller compared to both controller-free solutions. While most measures did not differ between the two controller-free solutions, the modifications made to the Leap API to form our prototype led to a significant decrease in accidental drops. Our results do not support the assumption of higher naturalness for hand tracking but suggest design elements to improve the robustness of controller-free object interaction in a grab-and-place scenario

    Decoding subjective emotional arousal from EEG during an immersive Virtual Reality experience

    Get PDF
    Immersive virtual reality (VR) enables naturalistic neuroscientific studies while maintaining experimental control, but dynamic and interactive stimuli pose methodological challenges. We here probed the link between emotional arousal, a fundamental property of affective experience, and parieto-occipital alpha power under naturalistic stimulation:37 young healthy adults completed an immersive VR experience, which included rollercoaster rides, while their EEG was recorded. They then continuously rated their subjective emotional arousal while viewing a replay of their experience. The association between emotional arousal and parieto-occipital alpha power was tested and confirmed by (1) decomposing the continuous EEG signal while maximizing the comodulation between alpha power and arousal ratings and by (2) decoding periods of high and low arousal with discriminative common spatial patterns and a Long Short-Term Memory recurrent neural network.We successfully combine EEG and a naturalistic immersive VR experience to extend previous findings on the neurophysiology of emotional arousal towards real-world neuroscience.Competing Interest StatementThe authors have declared no competing interest

    Socio-cultural norms of body size in Westerners and Polynesians affect heart rate variability and emotion during social interactions

    No full text
    The perception of body size and thus weight-related stigmatization vary between cultures. Both are stronger in Western than in Polynesian societies. Negative emotional experiences alter one’s behavioral, psychological, and physiological reactions in social interactions. This study compared affective and autonomic nervous system responses to social interactions in Germany and American Samoa, two societies with different body-size related norms. German (n = 55) and Samoan (n = 56) volunteers with and without obesity participated in a virtual ball-tossing game that comprised episodes of social inclusion and social exclusion. During the experiment, heart rate was measured and parasympathetic activity (i.e., high-frequency heart rate variability) was analyzed. We found differences in both emotional experience and autonomic cardio-regulation between the two cultures: during social inclusion, Germans but not Samoans showed increased parasympathetic activity. In Germans with obesity, this increase was related to a more negative body image (comprising high rates of weight-related teasing). During social exclusion, Samoans showed parasympathetic withdrawal regardless of obesity status, while Germans with obesity showed a stronger increase in parasympathetic activity than lean Germans. Furthermore, we found fewer obesity-related differences in emotional arousal after social exclusion in Samoans as compared to Germans. Investigating the interplay of socio-cultural, psychological, and biological aspects, our results suggest influences of body size-related socio-cultural norms on parasympathetic cardio-regulation and negative emotions during social interactions

    Stereoscopic depth increases intersubject correlations of brain networks

    Get PDF
    Three-dimensionalmovies presented via stereoscopic displays have becomemore popular in recent years aiming at a more engaging viewing experience. However, neurocognitive processes associated with the perception of stereoscopic depth in complex and dynamic visual stimuli remain understudied. Here, we investigate the influence of stereoscopic depth on both neurophysiology and subjective experience. Using multivariate statistical learning methods, we compare the brain activity of subjects when freely watching the same movies in 2D and in 3D. Subjective reports indicate that 3D movies are more strongly experienced than 2D movies. On the neural level, we observe significantly higher intersubject correlations of cortical networks when subjects are watching 3D movies relative to the same movies in 2D. We demonstrate that increases in intersubject correlations of brain networks can serve as neurophysiologicalmarker for stereoscopic depth and for the strength of the viewing experience

    Evolution of the Normal State of a Strongly Interacting Fermi Gas from a Pseudogap Phase to a Molecular Bose Gas

    Full text link
    Wave-vector resolved radio frequency (rf) spectroscopy data for an ultracold trapped Fermi gas are reported for several couplings at Tc, and extensively analyzed in terms of a pairing-fluctuation theory. We map the evolution of a strongly interacting Fermi gas from the pseudogap phase into a fully gapped molecular Bose gas as a function of the interaction strength, which is marked by a rapid disappearance of a remnant Fermi surface in the single-particle dispersion. We also show that our theory of a pseudogap phase is consistent with a recent experimental observation as well as with Quantum Monte Carlo data of thermodynamic quantities of a unitary Fermi gas above Tc.Comment: 9 pages, 9 figures. Substantially revised version (to appear in Phys. Rev. Lett.
    • …
    corecore