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Three-dimensionalmovies presented via stereoscopic displays have becomemore popular in recent years aiming
at a more engaging viewing experience. However, neurocognitive processes associated with the perception of
stereoscopic depth in complex and dynamic visual stimuli remain understudied. Here, we investigate the influ-
ence of stereoscopic depth on both neurophysiology and subjective experience. Using multivariate statistical
learning methods, we compare the brain activity of subjects when freely watching the same movies in 2D and
in 3D. Subjective reports indicate that 3D movies are more strongly experienced than 2D movies. On the neural
level, we observe significantly higher intersubject correlations of cortical networks when subjects are watching
3D movies relative to the same movies in 2D. We demonstrate that increases in intersubject correlations of
brain networks can serve as neurophysiologicalmarker for stereoscopic depth and for the strength of the viewing
experience.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
Introduction

Because of the horizontal separation of the eyes in the head, each eye
receives slightly different images of the world. The cerebral cortex
integrates these subtle differences, so-called binocular disparities, with
additional perceptual cues and cognitive factors. It thus enables us to
perceive stereoscopic depth and to experience three-dimensional
space (Parker, 2007). For almost two centuries, this perceptual phe-
nomenon has been used to induce an illusion of depth by presenting
two offset images separately to each eye (Crone, 1992; Wheatstone,
1838). In recent years, the presentation of moving images increasingly
employs stereoscopic depth and 3D stimuli have entered not only tele-
vision, computer games, and cinemabut also professional environments
for human–machine interaction. The addition of stereoscopic depth to
visual stimuli aims at approximating everyday-life visual perception,
that is, at increasing how realistic a stimulus is. A reduction of sensory
differences between artificial stimuli and the physical environment
leads to amore engaging viewing experience (Sanchez-Vives and Slater,
Technische Universität Berlin,
622.
mann).

. This is an open access article under
2005) — a phenomenon called “immersion” (from Latin: to dive in).
Hence, the strength of experience is influenced by aspects of the
medium as well as by psycho-physiological processes of the subject. In
our study,we assessed both:wemeasured brain activitywith functional
magnetic resonance imaging (fMRI) while subjects were freely viewing
movies with or without stereoscopic depth. The strength of the
experience was acquired through self-report.

Experiments employing complex and dynamic visual stimuli with
stereoscopic depth, which are closer to everyday-life visual processing
than – especially static – 2D stimuli, can be a first step towards tackling
a long-standing and important question behind neuroscientific
research: how does our brain process real-world sensory input? To an-
swer this question, neuroscience has extended its focus from studying
brain activity of anesthetized animals in response to simple stimuli to
studying brain activity of awake brains in response to more complex
and realistic stimuli (Maguire, 2012; Zacks et al., 2001). The classical
approach using simple stimuli allows to control stimulus parameters
systematically in order to study their influence on brain activity (Rust
andMovshon, 2005). However, exploring all possible stimuli separately
is infeasible. Also, transferring results obtained with the classical
approach to real-world scenarios is difficult, as realistic stimuli lead to
different brain activation compared to classical simple stimuli (Kayser
et al., 2004; Snow et al., 2011). Moreover, neural activity in awake
the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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Table 1
Description of the movie content.

No. Description

1 Ride through a city in an oldtimer car
2 Time lapse movie of a pink flower opening and closing its bloom
3 Flock of dolphins swimming through underwater plants
4 Police sheriff and woman exploring a dark alley
5 Skateboarders doing tricks in a skateboard hall
6 Mountain bikers jumping over gaps in a dirt course
7 Three people fishing and exchanging money, two leaving in a canoo
8 Race car rally through the woods
9 Roller coaster ride
10 Skydive with the jump from the plane, free fall, and landing
11 Surfer standing on his board and riding a wave
12 Individual manatee, then a flock of manatees under water
13 People jumping over a cliff in wingsuit costumes
14 Scenes from a Graffiti and BMX event
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animals is very different from brain activity in anesthetized animals
(Greenberg et al., 2008).

Therefore, a promising approach to the question how brains process
real-world sensory input is to directly study non-anesthetized brain
activity in response to complex and more realistic stimuli, for example
by non-invasively acquiring neural data during natural vision
(Dmochowski et al., 2012; Hasson et al., 2004; Huth et al., 2012).

Analyzing brain responses to complex stimuli under natural viewing
conditions is difficult. Classical approaches to analyze neuroimaging
data acquired using natural stimuli require considerable human
intervention, such as for the design of appropriate filters for feature
extraction (Bartels et al., 2008) or labeling of objects and scenes (Huth
et al., 2012). In our study, we followed the approach by Hasson and
colleagues, who showed that free viewing of complex movie stimuli
leads to increased pairwise correlations of single fMRI voxel time
courses (Hasson et al., 2004, 2009). We extended their approach by
three aspects: first, we used a bigger sample than previous studies.
Second,we added stereoscopic depth tomovies and quantified associat-
ed changes in intersubject correlations. Third, we used multivariate
techniques to analyze intersubject correlations of brain networks rather
than correlations of single voxel time courses. This has twomain advan-
tages: multivariate techniques have a higher signal-to-noise ratio
(Haufe et al., 2014; Kriegeskorte et al., 2006) and, in contrast to
voxelwise correlation analyses, our analysis estimates subject-specific
networks and can thus account for inter-individual differences in
functional anatomy. We hypothesized that stereoscopic movies are
both experienced more strongly and associated with increased correla-
tions of brain activity across movie viewers. Classically, both the dorsal
and the ventral pathways of the visual system contribute to the analysis
and perception of stereoscopic depth, albeit their neural computations
differ (Preston et al., 2008). Especially higher visual regions in middle
temporal cortices have been shown to be involved in stereoscopic
depth processing both in monkeys (DeAngelis et al., 1998) and in
humans (Rokers et al., 2009). Localizing the maximally correlated
time courses across movie viewers, we expected the activity pattern
to extend beyond the regions in the visual system that are involved in
processing stereoscopic information.

Material and methods

Participants

Twenty-six healthy participants were recruited through ads in
public spaces and through university mailing lists. Participants did not
report past or current neurological disease, psychiatric disorder, or
drug abuse, did understand German, and did not fulfill standard MRI
exclusion criteria. Prior to scanning, participants were thoroughly in-
formed and gave their written consent. The experiment was approved
by the local ethics committee. One participant was excluded due to in-
tense sleepiness. Participants that entered the analysis were 25 young
adults (12 males, 13 females) at an average age of 26.7 years (SD: 3.5,
range 21–35). They were all right-handed according to self-report
(Oldfield, 1971) (mean: 90, SD: 14) and had been on average 3.0
times (SD: 2.3, range 0–10) to a 3D cinema, as assessed after participa-
tion in the experiment. All subjects had normal vision: 7 corrected by
glasses, 2 by contact lenses, and 16 did not need correction. For those
who needed correction, mean dioptric values were −1.75 for the left
(SD: 2.1, range −5.8 to +2.3) and −1.4 for the right eye (SD: 2.1,
range −5.8 to +2.5).

Stimuli

Stimuliwere 14different videos of 42.5 s length each: content length
was 40.5 s, preceded by 2 s of black screen without fixation cross for
visual adjustment and to avoid distortions induced by codec and pre-
sentation software. Videos were presented at 30 frames per second,
resulting in a total number for each stimulus of 1275 frames at size
768 × 576 pixels (~28.8° × 21.6°) on each eye. The videos, which
were all originally shot using stereoscopic recording equipment, were
acquired over the internet. Their content varied from, for example, a
calm time lapse montage of a blossoming flower (http://www.
stereomaker.net/sample/index.html, accessed March 20, 2013) to a
rapid car rally, filmed by onboard cameras (http://alesco.cz/, accessed
December 8, 2012; see Table 1). Videos were edited using VirtualDub
1.9.11 (http://www.virtualdub.org/) and encoded using the XVID
codec. Every movie was shown twice: in the 3D condition, stereoscopic
depth was induced by presenting the two binocular perspectives of the
scene to the corresponding eyes, while in the 2D condition, the same
stimulus (left eye) was delivered to both eyes. As stimulus order was
pseudo-randomized for each participant, novelty effects were balanced
and stimulus characteristics were controlled for. The latter involve not
only statistical properties like brightness, contrast, color, or motion
but also more subjective stimulus features like personal preference for
themovie content. Individual videos were interspersedwith 20 s blocks
of fixation and the first video presentation was preceded by a 30 s base-
linefixation block. Presentation software version 14.9 (Neurobehavioral
Systems, Inc., Albany, CA), a stereo adapter, and MR-compatible video
goggles with a native resolution of 800 × 600 pixels and a color depth
of 32 bit (VisualSystem, NordicNeuroLab; Bergen, Norway) were used
for stimulus presentation. Careful adjustment of the goggle system
and its built-in dioptric correction prior to scanning ensured optimal
stimulus visibility.
Procedure

All participants were naïve with respect to content and category of
the stimuli. Before entering the scanner, they completed a short demo-
graphic questionnaire. They were instructed to attentively watch the
presented movies and answer four questions after each presentation.
On a Likert-type scale from 1 to 7 with labeled extremes they rated
(a) valence (1: negative, 7: positive), (b) arousal (1: weak, 7: strong),
(c) immersion into the presented movie (1: weak, 7: strong), and (d)
awareness of theMRI environment (1: weak, 7: strong) for each stimu-
lus. Ratings were collected using an MRI-compatible button box with
three buttons (Current Designs, Inc., Philadelphia, PA, USA). Using the
index, middle, and ring fingers of the right hand, participants could
shift the colored circle, which indicated their current selection, before
confirming their choice using themiddle button. Theywere not restrict-
ed in their time to answer each question.

After the scanning session, participants answered questions regard-
ing their experience with and opinion about 3D movies, before they
completed a questionnaire of immersive tendencies (QIT; Cronbach's
α = .80), which assessed their personal habits of being drawn into
apparent realities like novels or movies (Scheuchenpflug et al., 2003).

http://www.stereomaker.net/sample/index.html
http://www.stereomaker.net/sample/index.html
http://alesco.cz/
http://www.virtualdub.org/


Table 2
Coordinates (in MNI space) and anatomical labels (AAL; Tzourio-Mazoyer et al., 2002) for peaks at which activation maps of time courses of maximally correlated brain networks were
significantly higher in the 3D compared to the 2D condition. Calculated using a paired t-test on activation patterns thresholded at p b .005 with minimal cluster extents k that ensured
whole-brain correction at p b .05; see Fig. 3.

x y z t (max) p (uncorrected) k (voxels) Region (AAL)

Component 1 (k N 108)
53 −70 −5 5.32 b .001 111 Right inferior temporal
48 −78 −8 3.60 .001 Right inferior occipital
48 −65 0 3.31 .001 Right middle temporal
−40 −63 −5 5.28 b .001 226 Left middle temporal
−40 −65 10 4.72 b .001 Left middle temporal
−53 −68 8 4.44 b .001 Left middle temporal

Component 2 (k N 85)
13 −53 35 4.85 b .001 107 Right precuneus
8 −63 35 4.02 b .001 Right precuneus
13 −63 45 3.24 .002 Right precuneus
70 −33 3 3.87 b .001 103 Right superior temporal
58 −35 −3 3.74 .001 Right middle temporal
55 −28 −13 3.60 .001 Right middle temporal

429M. Gaebler et al. / NeuroImage 100 (2014) 427–434
Data acquisition

MR imaging was performed on a Siemens TIM Trio 3T MR scanner
with a standard 12-channel head coil (Siemens Medical Solutions,
Erlangen, Germany) at the Berlin Center for Advanced Neuroimaging.
A T1-weighted image was acquired as a high-resolution anatomical ref-
erence using a 3D-MPRAGE sequence with isotropic voxels of 1 mm3,
192 sagittal slices, repetition time (TR) 1900 ms, echo time (TE)
2.52 ms, flip angle 9°, field of view (FoV) 25 × 25 cm2. T2∗-weighted
gradient-echo echo-planar images (EPI) were collected for whole-
brain functional imaging with isotropic voxels of 2.5 × 2.5 × 2.5 mm3

(42 axial slices with a 20% distance factor, TR = 2500 ms, TE = 25 ms,
flip angle = 82°, FoV = 19 × 19 cm2). 476 volumes during viewing
were acquired for each participant. Total volume numbers (including
fixation periods and rating phases that differed in length for each partic-
ipant) ranged from 853 to 1042 (mean: 936, SD: 43.1). For correcting
distortions of the EPI images induced by staticmagneticfield inhomoge-
neities, field maps were computed from a standard gradient-echo
sequence with two echoes at TE1 = 5.19 ms and TE2 = 7.65 ms, TR =
500 ms, flip angle = 60°, and the geometric parameters matching the
EPI images.

Imaging data preprocessing

Image preprocessing and statistical analyses were carried out using
SPM8 (Wellcome Trust Centre for Neuroimaging, London, UK; http://
www.fil.ion.ucl.ac.uk/spm/) and Matlab (MathWorks, Natick, MA, USA).
Image series were inspected for excessive head movements but no
subject exceeded the threshold of 1 mm/TR. After realignment to the
first image (including unwarping using the acquired fieldmap) and T1
coregistration onto the mean EPI, rigidly aligned tissue-class images for
gray and white matters and cerebrospinal fluid were generated from
the coregistered T1 images employing the “New Segment” function. Indi-
vidual flow fields for warping them to the structural template from 550
healthy adult controls provided with the VBM8 toolbox (Christian
Gaser, University of Jena, Germany; http://dbm.neuro.uni-jena.de/vbm/)
were created using the DARTEL algorithm. Functional images were then
normalized to MNI space and smoothed with a Gaussian kernel of
6 mm FWHM using the normalization function of the DARTEL toolbox.
For further analysis,we extracted the graymatter voxels using the respec-
tive template contained in SPM8 after binarizing it with a threshold of .5.

Behavioral data analysis

Two-way repeated-measures ANOVAs with factors “movie”
(14 levels) and “condition” (2D versus 3D) were conducted to analyze
in-scanner ratings. In case Mauchly's test indicated a violation of the
sphericity assumption, degrees of freedom were corrected using
Greenhouse–Geisser estimates of sphericity. In addition to post-hoc
t-tests (where applicable), two-sided bivariate correlations were calcu-
lated to connect in-scanner ratings to values of immersive tendencies as
assessed by the QIT. Outlier subjects of more than 2 standard deviations
below group means were removed (2 subjects for immersion ratings
and 1 subject for the correlation between differential immersion ratings
and the QIT).

fMRI data analysis

In order to find brain networks of activation that are common to all
subjects, we introduce the canonical intersubject correlation coefficient
(CISC), a multivariate extension of the voxel-wise intersubject correla-
tion measures previously used for analysis of brain activation evoked
by complex movie stimuli (Hasson et al., 2004). CISCs are based on
canonical correlation analysis (CCA) (Hotelling, 1936), which we used
in a similar way as in the analysis of multimodal neuroimaging studies
(Biessmann et al., 2011), only that neuroimaging modalities are here
replaced by experimental subjects. The underlying assumption is that
a network of brain activation for each subject s ∈ {1, 2, …, S} can be
captured as a linear combination of voxels wsi ∈ ℝV (a V-dimensional
vector, where V denotes the number of voxels) of the multivariate
voxel time series Xs ∈ ℝV × T (T denotes the number of fMRI volumes).
The subscript s indexes the subject and the subscript i indicates that
wsi is the ith canonical direction. As the stimulus order was randomized
across subjects, fMRI time series needed to be reordered such that each
fMRI volume (column of Xs) corresponds to the same movie stimulus
and frame therein across subjects. Prior to reordering columns of Xs,
we removed baseline drifts in each voxel time series (rows of Xs) by ap-
plying a high-pass filter to each row of Xs (fifth-order Butterworth filter
as implemented in Matlab, cut-off frequency was 0.005 Hz). The linear
combinations wsi are called canonical directions. We can obtain the
time course, also called canonical component, of brain network i for
subject s by computingwsi

⊤Xs. The goal of CISC analysis is tofind those ca-
nonical directions wsi such that the sum over all pairwise correlations
(for all pairs of subjects) between the canonical components is
maximized, with the constraint that the time courses of two different
networkswsi andwsj be uncorrelated. When concatenating all K canoni-
cal directionsws1,ws2,…,wsK in amatrixWs=[ws1,ws2,…,wsK]∈ℝV × K,
the objective function of CCA can be formulated as

argmax
Wi ;W j

X
i

X
j
Trace W⊤

i XiX
⊤
j W j

� �
;∀ i; j

subject to W⊤
i XiX

⊤
i Wi ¼ I;∀ i;

ð1Þ
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A B

Fig. 1. (A) Participants experienced 3D movies more strongly (immersion; 1: weak, 7:
strong) than the same movies in 2D (one-sided post-hoc t-test; t(22) = 1.91, p = .035,
d= 0.25). Error bars: S.E.M. (B) Differential immersion (3D–2D)was positively correlated
with individual immersive tendencies, as measured by a questionnaire (QIT) after
scanning (Pearson's r(24) = .562, p= .004).
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where I is the identity matrix. Extensions of classical CCA to sets of vari-
ables larger than two are treated in Kettenring (1971). The solution of
Eq. (1) is given as the top eigenvectors of the generalized eigenvalue
equation
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Here Cij= XiXj
⊤ denotes the empirical covariancematrix (neglecting

normalization constants) between the ith and jth subject. For computa-
tional efficiency, we computed Cij not from the full data matrices Xs. We
reduced the spatial dimension using principal component analysis

(PCA; Pearson, 1901) and computed Cij ¼ eXi
eX⊤

j from matrices
eXs∈ℝ F�T obtained by projecting the full data matrix onto the F top
eigenvectors Us of the (spatial) covariance matrix XiX j

⊤, so

eXs ¼ U⊤
s Xs: ð3Þ

The principal directions Us ∈ ℝV × F were computed for each sub-
ject separately, for details see Appendix A. We kept only as many
principal components as were needed to cover 99.9% of the variance
in all voxel time series. The number of principal components F was
between 20 and 30, depending on the subject. Importantly, in
order to obtain authentic (and not overfitted) estimates of CISCs,
we computed the PCA subspaces Us and the canonical subspaces Ws

in a leave-one-movie-out cross-validation. For each movie, we esti-
mated Us andWs on all but this movie (the training data set). The ca-
nonical components for the fMRI data recorded during the held-out
movie were computed by projecting them onto Us andWs computed
on the training data set.

Control conditions

We constructed two control conditions along the lines of standard
permutation testing. In a first control condition, we shuffled all fMRI
scans in time (complete shuffle condition). All covariation between sub-
jects' brain activations is removed in this condition. In a second control
condition, we tested whether the covariation between brains is movie-
specific or reflects merely stimulus-unspecific, generic visual activation.
We left the temporal order within each movie block intact and shuffled
only the movie labels (block shuffle condition). If the intersubject corre-
lations in this condition are as high as in the original unshuffled data set,
then the intersubject correlations do not reflect stimulus-specific brain
activation, but rather unspecific visual activation.

Classification of stimulus condition and reported immersion by CISCs

We predicted stimulus condition (2D or 3D) from CISC values in a
leave-one-movie-out cross-validation, for more details see Lemm et al.
(2011). For each movie, we trained a regularized linear discriminant
classifier (LDA) on the CISC values of the most strongly correlated
brain networks computed during all but one movie. LDA finds the
normal vector wLDA ∈ ℝK of a linear decision boundary by

wLDA ¼ Sþ λIð Þ−1 μþ−μ−
� � ð4Þ

where μ+ and μ_ are the means of the positive and negative class,
respectively, S is the sum of the within-class covariance matrices, and
λ is a regularization parameter that is fitted using nested cross-
validation within the training data set. The number of networks we
used to compute the CISCs, on which the classifier was trained, was
K = 5. We then tested the prediction accuracy and receiver operating
characteristic (ROC) of the classifier by predicting the labels on the
held-out movie. For the prediction of stimulus conditions, the positive
class was the 3D condition and the negative class was data recorded in
the 2D condition. For the prediction of immersion reports, we first nor-
malized the immersion ratings by subtracting themeanof each subject's
ratings. We then binarized the normalized ratings and assigned
negative labels (low immersion) to normalized ratings smaller than 0
and positive labels (high immersion) to ratings larger than 0. In order
to obtain robust estimates of the ROC of the classifier, we performed
100 bootstrap resamplings within the training set.

Localization of differential CISC strength

The extent to which each voxel reflects a canonical component can
be visualized by As = Ws

⊤XsXs
⊤ (Haufe et al., 2014). Each column of the

matrix As∈ℝV × K contains the spatial pattern of activation correspond-
ing to one canonical component. We compared the patterns of
activation, averaged across all movies, between the 2D and the 3D con-
ditions. Patterns were compared in paired t-tests using SPM8. Results
were thresholded at p b .005 and corrected for multiple comparisons
(resulting in awhole-brain correction threshold of p b .05) by determin-
ing individual cluster extent k thresholds with the calculated intrinsic
smoothness of the individual T-value image, a cluster connection radius
of 3 mm, and a 1000-iteration Monte Carlo simulation, using AlphaSim
as implemented in the REST Toolbox 1.8 (http://www.restfmri.net/).
Resulting differential patterns, resized using SPM8 functions, were
associated with the ten most highly correlated psychological concepts
per component using the decode function of the online database
Neurosynth version 0.3.0 dev (Yarkoni et al., 2011). In an automatized
and unbiased manner, this function assesses the spatial similarity
between an input image and all concept-based meta-analysis maps in
its database.

Results and discussion

Behavioral results

In line with the hypothesis that stereoscopic movies are closer to
real-world sensory input and enhance the viewer's engagement with
the movie content, a one-sided paired t-test showed significantly
stronger immersion of the viewers in the 3D relative to the 2D condition
(t(22) = 1.91, p = .035, Cohen's d = 0.25). The increase in the 3D
condition was on average (±S.E.M.) 3.82% ± 1.77% (see Fig. 4A).

Differential immersion (3D–2D) showed a significant positive
correlation with individual immersive tendencies as reported on the
questionnaire for immersive tendencies (QIT) after scanning (Pearson's
r(24) = .562, p = .004; see Fig. 1). This indicates that the higher the

http://www.restfmri.net/
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individual habits to be absorbed in apparent realities, the more strongly
3D movies are experienced as compared to the same movies in 2D.

3D movies increase intersubject correlations

In order to assess the effect of stereoscopic stimuli on neural activity,
we computed themultivariate canonical intersubject correlation coeffi-
cients (CISCs) between all pairs of subjects (see Material and methods)
using multiway canonical correlation analysis (Hotelling, 1936;
Kettenring, 1971).

Fig. 2 shows that in the majority of cases, CISCs were significantly
higher when subjects viewed 3D movies than when subjects viewed
the same movies in 2D (two-sided paired t-tests; 1st component:
t(299) = 6.60, p b .001, 2nd component: t(299) = 6.84, p b .001).
CISCs in both conditions were significantly higher than in either control
condition (all p b .001), inwhichwe randomly shuffled themovie labels
(block shuffle) or all data points (complete shuffle; see Material and
methods). For the cortical network that was most correlated across all
subjects (the first canonical component), CISCs were .66 ± .010
(mean ± S.E.M.) during 3D movies and .62 ± .010 during 2D movies,
while CISCs were .15 ± .007 for the block shuffle condition and .066 ±
.003 for the complete shuffle condition. For the second canonical
A B

C

E

D

Fig. 2. Stereoscopic depth increased canonical intersubject correlations on both the
single-subject and the group level. (A to D) Scatter plots showing canonical intersubject
correlation coefficients (CISCs) for 2D (x-axis) and 3D (y-axis). Circles above the diagonal
indicate higher correlations in the 3D condition. (A and B) CISCs between a single subject
and all other subjects for the first (A) and the second (B) canonical components. (C andD)
CISCs for each subject averaged across all subject pairs for the first (C) and the second
(D) canonical components. (E) Mean CISCs (±S.E.M.) in canonical components 1 and 2
during 3D compared to 2D viewing.
component, CISCs were .61 ± .017 (3D), .56 ± .015 (2D), .15 ± .006
(block shuffle) and .077 ± .003 (complete shuffle).

Fig. 4A shows that the increase in CISCs in the 3D condition was
significantly stronger than the increase in immersion as quantified by
subjective reports (both components p b .001). In the first component
the increasewas on average 15.0%± 2.72%, while in the second compo-
nent the increase was 12.3% ± 2.55%.

These results confirm and extend the finding from Hasson and
colleagues that individual brains “tick collectively” during natural vision
(Hasson et al., 2004). Using a bigger sample, different stimuli with
varying stereoscopic depth, and multivariate analyses, we show that
stereoscopic movie stimuli are associated with increased correlations
between brain networks across individuals.

This increase can also be shown for single sceneswithin amovie.We
computed CISCs in sliding windows of 15 second length (or 6 fMRI
volumes). Fig. 4C shows the time course of CISC differences between
3D and 2D while subjects were watching a skydiving movie recorded
with a head camera. The CISC difference between 3D and 2Dwas largest
in two scenes in which depth cues were pronounced: the jump out of
the plane and while landing. During the free fall in-between these two
scenes, when there were fewer depth cues, the CISC difference was
negligible.

Visualization and interpretation of CCA networks

In order to visualize and interpret the maximally correlated brain
networks, we computed activation maps of their time courses and
contrasted the maps of the two conditions (see Material and
methods). Fig. 3 shows those brain regions that were significantly
more active in the 3D relative to the 2D condition. We did not observe
significant activations for the inverse contrast. In order to relate the
differential patterns to psychological concepts,we used thedecode func-
tion of Neurosynth (Yarkoni et al., 2011). Using text-mining techniques
in a large corpus of neuroimaging studies, Neurosynth allows to associ-
ate contrast patterns with those psychological terms that are most fre-
quently used in studies that report activation in these areas (see
Fig. 3). Strongest differential network activations, averaged across
movies, were localized in bilateral occipito-temporal regions, which
have been associated with visual perception of stereoscopic depth
(Rokers et al., 2009), motion, and action (Grosbras et al., 2012).
Significant differences were also found in the precuneus and in right-
lateralized superior/middle temporal gyrus. Psychological terms associ-
ated with these areas describe language- and self-related processes
(Cavanna and Trimble, 2006; Tremblay and Small, 2011).

The nonverbal and self-related terms might be connected to the
stronger subjective experience of scenes shown in 3D movies. Taken
together, these findings provide a basis for future research on how the
brain processes dynamic visual information in the real world. Our re-
sults suggest that gradually enriching stimuli with more cues in order
to bring stimuli closer to real-world experiences should be accompanied
by gradual increases in (canonical) intersubject correlations.

Relationship between intersubject correlations and psychological
factors

We investigatedwhether we can predict from CISCs (a) the stimulus
category, and (b) how strongly subjects perceived amovie.We trained a
linear classifier on the CISCs in the five most correlated cortical
networks estimated during all but one movie. Then, we predicted the
stimulus category (2D or 3D) from the CISCs computed on fMRI data
recorded while subjects were watching the movie that was excluded
from the training set. We found that CISCs can reliably discriminate
3D stimuli from 2D stimuli. The accuracy for decoding the 2D/3D
stimulus condition was 64.9% ± 2.9% (mean ± S.E.M. across cross-
validation folds) and the bootstrapped area under the receiver operat-
ing characteristic curve (AUC) was .70 (see Fig. 4B). Moreover, CISC



Fig. 3. Activationmaps of time courses of maximally correlated brain networks were contrasted (3D–2D) and thresholded at p b .005with individual cluster extent thresholds for whole-brain
correction at p b .05 (component 1: k N 108, component 2: k N 85). For exact coordinates see Table 2. Patterns in component 1 (red) and component 2 (green) were associated with psycho-
logical concepts using the decode function of Neurosynth (Yarkoni et al., 2011). The x-axes represent correlation values between the contrast pattern and each concept's meta-analysis map.
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values could discriminate high and low immersion ratings of movies
(accuracy 54.9% ± 2.0%, AUC = .56). Although the classification
accuracy of immersion ratings on hold-out data was rather low, it was
significantly higher than chance level, which was at 50% (two-sided
one-sample t-test; t(13)= 2.42, p= .031), indicating that it is possible
to infer from the strength of intersubject correlations whether or not a
subject experiences a movie as engaging.

Note that the decoding accuracy of stimulus category (2D/3D)
was significantly higher than that of subjective reports of immersion
(two-sided paired t-test; t(13) = 2.79, p = .015). Likewise, the in-
crease in subjective immersion ratings was smaller than the increase
in CISC values in the 3D condition (see Fig. 4C). A possible explana-
tion for these differences is that the strength of an experience is
strongly influenced by factors other than stereoscopic depth, such
as content and narrative structure of a movie or the possibility to in-
teract with the medium. In our study, adding “interaction” as exper-
imental factor was not only difficult given the chosen stimuli and
limitations imposed by the MRI environment. Another difficulty
with interactive paradigms in our setting is that our analysis requires
all subjects to have seen the same stimulus in order to calculate in-
tersubjective correlations. Furthermore, by presenting all movie
stimuli (i.e., each movie twice) to each subject and in randomized
order, we deliberately eliminated subjective and complex movie fea-
tures related to content and narrative structures. This enabled us to
isolate the influence of stereoscopic stimuli on immersion and
on CISCs. Evaluating this effect, we found that the increase in CISC
values was substantially larger than the increase in immersion. In line
with previous studies, this difference suggests that for quantification
of how strongly a complex and dynamic stimulus is experienced,
Fig. 4. (A) Stereoscopicmovie stimuli result in amoderate increase of reported immersion and a s
discriminate 2D from 3D stimuli on hold-out data (blue line) and discriminate high and low imm
positive rate (TPR) of a linear classifier as a function of its false positive rate (FPR). (C)Difference of C
S.E.M.), computed in time windows of 15 s. Note the strong increase in CISCs in the 3D condition
neurophysiological markers are a valuable complement to subjective
reports (Porbadnigk et al., 2013; Scholler et al., 2012).

Conclusions

Subjective reports of immersion indicate that stereoscopic movies
are experienced more strongly than the same movies in 2D. Using
multivariate analyses, we find significantly increased intersubject
correlations of cortical networks when participants are watching 3D
movies. In addition, classifiers trained on intersubject correlations candis-
criminate 2D from 3D stimuli and high from low immersion ratings. In
conclusion, our results highlight the potential of canonical intersubject
correlations as a neurophysiological marker not only for visual features
such as stereoscopic depth but also for how strongly a stimulus is
experienced by human observers.

These findings could have implications for areas beyond basic and
cognitive neurosciences. For example, CISCs might be useful for
commercial applications and applied research interested in realistic
movies. Using CISCs, one could optimize stereoscopic movies by compar-
ing different scenes or presentation techniques and corresponding differ-
ences in canonical intersubject correlations. Importantly, CISCs can be
used as a non-intrusive marker also on short time scales; this extends
their usability beyond behavioral measures or questionnaires, which in-
terfere with a subject's state of immersion. We have shown that CISC
values can be computed on a per-scene basis in sliding windows. If a
data base of previously scanned brain activation from other subjects is
available, this analysis can also be conducted in an online fashion.

The finding that increased intersubject correlations of brain activa-
tion are associated withmore realistic stimuli and increased immersion
trong increase in canonical intersubject correlations (CISCs) in components 1 and 2. (B) CISCs
ersion ratings (brown line). The receiver operating characteristic (ROC) curves show the true
ISCs (3D–2Dcondition) in thefirst canonical component during a skydivingmovie (mean±
when the camera man jumps out of the plane and when he is landing.

image of Fig.�4
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may also tie into philosophical debates. For example, it can provide
evidence concerning the intersubjective dimension of perception and
experience (Gallagher, 2008; Zahavi, 2003) with the potential to con-
nect phenomenological conceptualization and empirical research
(Gallagher, 2012). Finally, our findings could have implications for clin-
ical research. From a clinical perspective, psychopathology entails a
patient's detachment from a reality shared between non-patients. The
results of this study suggest that the degree ofmental disorders with re-
spect to derealization or detachment from a socially shared reality may
be neurophysiologically quantified using intersubject correlations, ex-
tending previous findings in autism (Hasson et al., 2009). Ultimately,
such quantitative markers could also have the potential to estimate
therapeutic success.
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Appendix A. Row-/column-space eigenvectors

We computed principal component analysis to reduce the spatial
dimension (the row-space) of the data matrix Xs for each subject. The
principal components Us ∈ ℝV × F are the top F eigenvectors of the
covariance matrix of the row-space XsXs

⊤ ∈ ℝV × V, where V is the num-
ber of voxels. As we only have T time samples in our recordings, the es-
timated covariance matrix XsXs

⊤ has a rank of maximally T. As pointed
out in Schölkopf et al. (1998), the solutionUs has to lie in a T dimension-
al subspace of the data matrix; hence the principal directions can be
expressed (up to a constant scaling for each eigendirection) as an
expansion of the data in Xs as Us = XsRs, where Rs ∈ ℝF × T are the top
F eigenvectors of the Gram matrix Xs

⊤Xs ∈ ℝT × T. The relationship
between the column space eigenvectors of Xs

⊤Xs and the row space
eigenvectors of the covariance matrix XsXs

⊤ can be illustrated by
considering the singular value decomposition (SVD) of Xs

Xs ¼ UsDsR
⊤
s ðA:1Þ

where Us are orthonormal vectors (i.e. Us
⊤Us = I) forming the PCA basis

of the row space, Rs are orthonormal vectors forming the PCA basis of
the column space, and Ds is a diagonal matrix containing the singular
values. Plugging this SVD approximation into the respective covariance
matrices yields

XsX
⊤
s ¼ UsDsR

⊤
s UsDsR

⊤
s

� �⊤

¼ UsDsR
⊤
s Rs|ffl{zffl}
I

D⊤
s U

⊤
s ¼ UsD

2
s U

⊤
s

ðA:2Þ
and

X⊤
s Xs ¼ UsDsR

⊤
s

� �⊤
UsDsR

⊤
s

¼ RsD
⊤
s U

⊤
s Us|fflffl{zfflffl}
I

DsR
⊤
s ¼ RsD

2
s R

⊤
s :

ðA:3Þ

From Eq. (A.1) we see that the eigenvectors of the row-space Us are

Us ¼ XsRsD̂s ðA:4Þ

where D̂s is a diagonal matrix that has 1/Ds(i,i) on its ith diagonal entry
and Ds(i,i) denotes the ith singular value.
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