25 research outputs found

    A Stochastic Framework for Quantitative Analysis of Attack-Defense Trees

    Get PDF
    Cyber attacks are becoming increasingly complex, practically sophisticated and organized. Losses due to such attacks are important, varying from the loss of money to business reputation spoilage. Therefore, there is a great need for potential victims of cyber attacks to deploy security solutions that allow the identification and/or prediction of potential cyber attacks, and deploy defenses to face them. In this paper, we propose a framework that incorporates Attack-Defense trees (ADTrees) and Continuous Time Markov Chains (CTMCs) to systematically represent attacks, defenses, and their interaction. This solution allows to perform quantitative security assessment, with an aim to predict and/or identify attacks and find the best and appropriate defenses to reduce the impact of attacks

    A Stochastic Framework for Quantitative Analysis of Attack-Defense Trees

    Full text link
    Cyber attacks are becoming increasingly complex, practically sophisticated and organized. Losses due to such attacks are important, varying from the loss of money to business reputation spoilage. Therefore, there is a great need for potential victims of cyber attacks to deploy security solutions that allow the identification and/or prediction of potential cyber attacks, and deploy defenses to face them. In this paper, we propose a framework that incorporates Attack-Defense trees (ADTrees) and Continuous Time Markov Chains (CTMCs) to systematically represent attacks, defenses, and their interaction. This solution allows to perform quantitative security assessment, with an aim to predict and/or identify attacks and find the best and appropriate defenses to reduce the impact of attacks

    Using attack-defense trees to analyze threats and countermeasures in an ATM: a case study

    Get PDF
    Securing automated teller machines (ATMs), as critical and complex infrastructure, requires a precise understanding of the associated threats. This paper reports on the application of attack-defense trees to model and analyze the security of ATMs.We capture the most dangerous multi-stage attack scenarios applicable to ATM structures, and establish a practical experience report, where we re ect on the process of modeling ATM threats via attack-defense trees. In particular, we share our insights into the benets and drawbacks of attack-defense tree modeling, as well as best practices and lessons learned

    Load time security verification

    No full text

    Instrumentation blueprints: towards combining several android instrumentation tools

    No full text
    Algorithms and the Foundations of Software technologyComputer Systems, Imagery and Medi

    Attack Trees: A Notion of Missing Attacks

    No full text
    International audienceAttack trees are widely used for security modeling and risk analysis. Classically, an attack tree combines possible actions of the attacker into attacks. In most existing approaches, an attack tree represents generic ways of attacking a system, but without taking any specific system or its configuration into account. This means that such a generic attack tree may contain attacks that are not applicable to the analyzed system, and also that a given system could enable some attacks that the attack tree did not capture.To overcome this problem, we extend the attack tree setting with a model of the analyzed system, allowing us to introduce precise path semantics of an attack tree and to define missing attacks. We investigate the missing attack existence problem and show how to solve it by calls to the NP oracle that answers the trace attack tree membership problem; the latter problem has been implemented and is available as an open source prototype
    corecore