206 research outputs found

    Influence of different wind directions in relation to topography on the outbreak of convection in Northern England

    No full text
    International audienceThe influence of different wind directions on the outbreak of convection in Northern England, was investigated with a high-resolution numerical model. The Clark model, a 3D finite-difference, non-hydrostatic model was used in this study. It was initialised with the topography of Northern England, a representation of surface characteristics, and used a routinely available meteorological sounding, typical of the unstable conditions. Results showed that convective cells were initially triggered in the lee of the elevated terrain, and that only after the convection had developed, were cells upwind of the elevated terrain produced. The windward slopes themselves seemed sheltered from convection. Under most wind directions, the central Pennines (the Forest of Trawden and the Forest of Rossendale) seemed particularly affected by convective rainfall

    Common and unique neural activations in autobiographical, episodic, and semantic retrieval

    Get PDF
    This study sought to explore the neural correlates that underlie autobiographical, episodic, and semantic memory. Autobiographical memory was defined as the conscious recollection of personally relevant events, episodic memory as the recall of stimuli presented in the laboratory, and semantic memory as the retrieval of factual information and general knowledge about the world. Our objective was to delineate common neural activations, reflecting a functional overlap, and unique neural activations, reflecting functional dissociation of these memory processes. We conducted an event-related functional magnetic resonance imaging study in which we utilized the same pictorial stimuli but manipulated retrieval demands to extract autobiographical, episodic, or semantic memories. The results show a functional overlap of the three types of memory retrieval in the inferior frontal gyrus, the middle frontal gyrus, the caudate nucleus, the thalamus, and the lingual gyrus. All memory conditions yielded activation of the left medial-temporal lobe; however, we found a functional dissociation within this region. The anterior and superior areas were active in episodic and semantic retrieval, whereas more posterior and inferior areas were active in autobiographical retrieval. Unique activations for each memory type were also delineated, including medial frontal increases for autobiographical, right middle frontal increases for episodic, and right inferior temporal increases for semantic retrieval. These findings suggest a common neural network underlying all declarative memory retrieval, as well as unique neural contributions reflecting the specific properties of retrieved memories

    Hippocampal and diencephalic pathology in developmental amnesia.

    Get PDF
    Developmental amnesia (DA) is a selective episodic memory disorder associated with hypoxia-induced bilateral hippocampal atrophy of early onset. Despite the systemic impact of hypoxia-ischaemia, the resulting brain damage was previously reported to be largely limited to the hippocampus. However, the thalamus and the mammillary bodies are parts of the hippocampal-diencephalic network and are therefore also at risk of injury following hypoxic-ischaemic events. Here, we report a neuroimaging investigation of diencephalic damage in a group of 18 patients with DA (age range 11-35 years), and an equal number of controls. Importantly, we uncovered a marked degree of atrophy in the mammillary bodies in two thirds of our patients. In addition, as a group, patients had mildly reduced thalamic volumes. The size of the anterior-mid thalamic (AMT) segment was correlated with patients' visual memory performance. Thus, in addition to the hippocampus, the diencephalic structures also appear to play a role in the patients' memory deficit

    Low-field thermal mixing in [1-13C] pyruvic acid for brute-force hyperpolarization

    Get PDF
    We detail the process of low-field thermal mixing (LFTM) between 1H and 13C nuclei in neat [1-13C] pyruvic acid at cryogenic temperatures (4–15 K). Using fast-field-cycling NMR, 1H nuclei in the molecule were polarized at modest high field (2 T) and then equilibrated with 13C nuclei by fast cycling (∼300–400 ms) to a low field (0–300 G) that activates thermal mixing. The 13C NMR spectrum was recorded after fast cycling back to 2 T. The 13C signal derives from 1H polarization via LFTM, in which the polarized (‘cold’) proton bath contacts the unpolarised (‘hot’) 13C bath at a field so low that Zeeman and dipolar interactions are similar-sized and fluctuations in the latter drive 1H–13C equilibration. By varying mixing time (tmix) and field (Bmix), we determined field-dependent rates of polarization transfer (1/τ) and decay (1/T1m) during mixing. This defines conditions for effective mixing, as utilized in ‘brute-force’ hyperpolarization of low-γ nuclei like 13C using Boltzmann polarization from nearby protons. For neat pyruvic acid, near-optimum mixing occurs for tmix ∼ 100–300 ms and Bmix ∼ 30–60 G. Three forms of frozen neat pyruvic acid were tested: two glassy samples, (one well-deoxygenated, the other O2-exposed) and one sample pre-treated by annealing (also well-deoxygenated). Both annealing and the presence of O2 are known to dramatically alter high-field longitudinal relaxation (T1) of 1H and 13C (up to 102–103-fold effects). Here, we found smaller, but still critical factors of ∼(2–5)× on both τ and T1m. Annealed, well-deoxygenated samples exhibit the longest time constants, e.g., τ ∼ 30–70 ms and T1m ∼ 1–20 s, each growing vs. Bmix. Mixing ‘turns off’ for Bmix > ∼100 G. That T1m ≫ τ is consistent with earlier success with polarization transfer from 1H to 13C by LFTM

    Hyperpolarised 13C MRI: a new horizon for non-invasive diagnosis of aggressive breast cancer

    Get PDF
    Hyperpolarised 13C MRI (HP-MRI) is a novel imaging technique that allows real-time analysis of metabolic pathways in vivo. 1 The technology to conduct HP-MRI in humans has recently become available and is starting to be clinically applied. As knowledge of molecular biology advances, it is increasingly apparent that cancer cell metabolism is related to disease outcomes, with lactate attracting specific attention. 2 Recent reviews of breast cancer screening programs have raised concerns and increased public awareness of over treatment. The scientific community needs to shift focus from improving cancer detection alone to pursuing novel methods of distinguishing aggressive breast cancers from those which will remain indolent. HP-MRI offers the opportunity to identify aggressive tumour phenotypes and help monitor/predict therapeutic response. Here we report one of the first cases of breast cancer imaged using HP-MRI alongside correlative conventional imaging, including breast MRI

    A case study of possible future summer convective precipitation over the UK and Europe from a regional climate projection

    No full text
    Climate change caused by green house gas emissions is now following the trend of rapid warming consistent with a RCP8.5 forcing. Climate models are still unable to represent the mesoscale convective processes that occur at resolutions ∼O(3 km) and are not capable of resolving precipitation patterns in time and space with sufficient accuracy to represent convection. In this article, the UK Met Office precipitation observations are compared with the simulations for the period 1990–1995 followed by a simulation of a near‐future period 2031–2036 for a regional nested weather model. The convection‐permitting model, resolution ∼O(3 km), provides a good correspondence to the observational precipitation data and demonstrates the importance of explicit convection for future summer precipitation estimates. The UK summer precipitation is reduced slightly (∼10%) for 2031–2036 and there is no evidence of an increase in the peak maximum hourly precipitation magnitude. A similar pattern is observed over the whole European inner model domain. The results using the Kain–Fritsch convective parameterization scheme at a resolution ∼O(12 km) in the outer domain increase summer precipitation by ∼10% for the UK. The average precipitation rate per event increases, dry periods extend and wet periods shorten. As part of the change, 10‐m winds of <3 m s⁻¹ become more common – a scenario that would impact on power generation from wind turbines through calmer conditions and cause more frequent pollution episodes

    Marine cloud brightening

    Get PDF
    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could—subject to satisfactory resolution of technical and scientific problems identified herein—have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud–albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action

    Mutations in thyroid hormone receptor α1 cause premature neurogenesis and progenitor cell depletion in human cortical development.

    Get PDF
    Mutations in the thyroid hormone receptor α 1 gene (THRA) have recently been identified as a cause of intellectual deficit in humans. Patients present with structural abnormalities including microencephaly, reduced cerebellar volume and decreased axonal density. Here, we show that directed differentiation of THRA mutant patient-derived induced pluripotent stem cells to forebrain neural progenitors is markedly reduced, but mutant progenitor cells can generate deep and upper cortical layer neurons and form functional neuronal networks. Quantitative lineage tracing shows that THRA mutation-containing progenitor cells exit the cell cycle prematurely, resulting in reduced clonal output. Using a micropatterned chip assay, we find that spatial self-organization of mutation-containing progenitor cells in vitro is impaired, consistent with down-regulated expression of cell-cell adhesion genes. These results reveal that thyroid hormone receptor α1 is required for normal neural progenitor cell proliferation in human cerebral cortical development. They also exemplify quantitative approaches for studying neurodevelopmental disorders using patient-derived cells in vitro.NIHR Cambridge Biomedical Centr
    corecore