1,284 research outputs found

    Multiscale non-adiabatic dynamics with radiative decay, case study on the post-ionization fragmentation of rare-gas tetramers

    Get PDF
    In this supplementary material, we recollect, for reader's convenience, the general scheme of suggested multiscale model (Sec. 1), and basic informations about approaches used for pilot study: a detailed description of the interaction model (Sec. 2) and dynamical methods used for the dark dynamics step (Sec. 3) reported previously in two preceding studies [1, 2]. In addition, a detailed description of the treatment of radiative processes is also given (Sec. 4).Comment: supplementary material for parent paper; 9 pages, 1 figure; corrected formulae and misleading notation in Sec.4 (pages 7 and 8

    Vibronic coupling and core-hole localization in K-shell excitations of ethylene

    Get PDF
    A new high-resolution measurement of the C 1s near-edge photoabsorption spectrum of the ethylene molecule is reported. An analysis of the vibrational structure in the C 1s-π* band indicates strong excitation of non-totally-symmetry modes and the importance of vibronic coupling. The latter phenomenon provides a mechanism for core-hole localization in the final state

    Performance of the Fully Digital FPGA-based Front-End Electronics for the GALILEO Array

    Full text link
    In this work we present the architecture and results of a fully digital Front End Electronics (FEE) read out system developed for the GALILEO array. The FEE system, developed in collaboration with the Advanced Gamma Tracking Array (AGATA) collaboration, is composed of three main blocks: preamplifiers, digitizers and preprocessing electronics. The slow control system contains a custom Linux driver, a dynamic library and a server implementing network services. The digital processing of the data from the GALILEO germanium detectors has demonstrated the capability to achieve an energy resolution of 1.53 per mil at an energy of 1.33 MeV.Comment: 5 pages, 6 figures, preprint version of IEEE Transactions on Nuclear Science paper submitted for the 19th IEEE Real Time Conferenc

    Panels of eco-friendly materials for architectural acoustics

    Full text link
    [EN] The objective of this work is to study the acoustic and mechanical properties of environmentally friendly materials manufactured through the process of resin infusion made from different types of fibres: some are biodegradable obtained from renewable resources and others from recycled textile waste. The materials studied are composed of fibres of jute, hemp, coconut, biaxial linen and textile waste. The modulus of elasticity and the airborne sound insulation are determined through dynamic and acoustic tests, respectively. The behaviour of these innovative materials is compared to some traditional materials commonly used in architectural acoustics. The acoustic study of these environmentally friendly materials is carried out considering them as light elements of a single layer for their application to insulation of walls. The results are compared to plasterboards, considered as the most commonly used light material in buildings for airborne sound insulation. In conclusion, these materials are a real and effective alternative to the traditional composites of synthetic matrices and reinforcements of glass fibres and there is a reduction in the production cost compared to the usual porous synthetic media that have expensive production processes.Fontoba-Ferrándiz, J.; Juliá Sanchis, E.; Crespo, J.; Segura Alcaraz, JG.; Gadea Borrell, JM.; Parres, F. (2020). Panels of eco-friendly materials for architectural acoustics. Journal of Composite Materials. 54(25):3743-3753. https://doi.org/10.1177/0021998320918914S374337535425Yahya, M. N., Sambu, M., Latif, H. A., & Junaid, T. M. (2017). A study of Acoustics Performance on Natural Fibre Composite. IOP Conference Series: Materials Science and Engineering, 226, 012013. doi:10.1088/1757-899x/226/1/012013Putra, A., Or, K. H., Selamat, M. Z., Nor, M. J. M., Hassan, M. H., & Prasetiyo, I. (2018). Sound absorption of extracted pineapple-leaf fibres. Applied Acoustics, 136, 9-15. doi:10.1016/j.apacoust.2018.01.029Dunne, R., Desai, D., & Sadiku, R. (2017). Material characterization of blended sisal-kenaf composites with an ABS matrix. Applied Acoustics, 125, 184-193. doi:10.1016/j.apacoust.2017.03.022Mohanty, A. K., Misra, M., & Hinrichsen, G. (2000). Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering, 276-277(1), 1-24. doi:10.1002/(sici)1439-2054(20000301)276:13.0.co;2-wLuckachan, G. E., & Pillai, C. K. S. (2011). Biodegradable Polymers- A Review on Recent Trends and Emerging Perspectives. Journal of Polymers and the Environment, 19(3), 637-676. doi:10.1007/s10924-011-0317-1Belakroum, R., Gherfi, A., Kadja, M., Maalouf, C., Lachi, M., El Wakil, N., & Mai, T. H. (2018). Design and properties of a new sustainable construction material based on date palm fibers and lime. Construction and Building Materials, 184, 330-343. doi:10.1016/j.conbuildmat.2018.06.196Sèbe, G. (2000). Applied Composite Materials, 7(5/6), 341-349. doi:10.1023/a:1026538107200Yates, M. R., & Barlow, C. Y. (2013). Life cycle assessments of biodegradable, commercial biopolymers—A critical review. Resources, Conservation and Recycling, 78, 54-66. doi:10.1016/j.resconrec.2013.06.010Rouison, D., Sain, M., & Couturier, M. (2006). Resin transfer molding of hemp fiber composites: optimization of the process and mechanical properties of the materials. Composites Science and Technology, 66(7-8), 895-906. doi:10.1016/j.compscitech.2005.07.040Sreekumar, P. A., Joseph, K., Unnikrishnan, G., & Thomas, S. (2007). A comparative study on mechanical properties of sisal-leaf fibre-reinforced polyester composites prepared by resin transfer and compression moulding techniques. Composites Science and Technology, 67(3-4), 453-461. doi:10.1016/j.compscitech.2006.08.025Rassmann, S., Reid, R. G., & Paskaramoorthy, R. (2010). Effects of processing conditions on the mechanical and water absorption properties of resin transfer moulded kenaf fibre reinforced polyester composite laminates. Composites Part A: Applied Science and Manufacturing, 41(11), 1612-1619. doi:10.1016/j.compositesa.2010.07.009Vijay, R., & Singaravelu, D. L. (2016). Experimental investigation on the mechanical properties ofCyperus pangoreifibers and jute fiber-based natural fiber composites. International Journal of Polymer Analysis and Characterization, 21(7), 617-627. doi:10.1080/1023666x.2016.1192354Williams, G. I. (2000). Applied Composite Materials, 7(5/6), 421-432. doi:10.1023/a:1026583404899O’Donnell, A., Dweib, M. ., & Wool, R. . (2004). Natural fiber composites with plant oil-based resin. Composites Science and Technology, 64(9), 1135-1145. doi:10.1016/j.compscitech.2003.09.024Tran, P., Graiver, D., & Narayan, R. (2006). Biocomposites synthesized from chemically modified soy oil and biofibers. Journal of Applied Polymer Science, 102(1), 69-75. doi:10.1002/app.22265Liu, Q., & Hughes, M. (2008). The fracture behaviour and toughness of woven flax fibre reinforced epoxy composites. Composites Part A: Applied Science and Manufacturing, 39(10), 1644-1652. doi:10.1016/j.compositesa.2008.07.008Scarponi, C., Pizzinelli, C. S., Sánchez-Sáez, S., & Barbero, E. (2009). Impact Load Behaviour of Resin Transfer Moulding (RTM) Hemp Fibre Composite Laminates. Journal of Biobased Materials and Bioenergy, 3(3), 298-310. doi:10.1166/jbmb.2009.1040Dahy, H. (2017). Biocomposite materials based on annual natural fibres and biopolymers – Design, fabrication and customized applications in architecture. Construction and Building Materials, 147, 212-220. doi:10.1016/j.conbuildmat.2017.04.079Saba, N., Paridah, M. T., & Jawaid, M. (2015). Mechanical properties of kenaf fibre reinforced polymer composite: A review. Construction and Building Materials, 76, 87-96. doi:10.1016/j.conbuildmat.2014.11.043Senthilkumar, K., Saba, N., Rajini, N., Chandrasekar, M., Jawaid, M., Siengchin, S., & Alotman, O. Y. (2018). Mechanical properties evaluation of sisal fibre reinforced polymer composites: A review. Construction and Building Materials, 174, 713-729. doi:10.1016/j.conbuildmat.2018.04.143Alves, C., Ferrão, P. M. C., Silva, A. J., Reis, L. G., Freitas, M., Rodrigues, L. B., & Alves, D. E. (2010). Ecodesign of automotive components making use of natural jute fiber composites. Journal of Cleaner Production, 18(4), 313-327. doi:10.1016/j.jclepro.2009.10.022Van Vuure, A. W., Baets, J., Wouters, K., & Hendrickx, K. (2015). Compressive properties of natural fibre composites. Materials Letters, 149, 138-140. doi:10.1016/j.matlet.2015.01.158Galan-Marin, C., Rivera-Gomez, C., & Garcia-Martinez, A. (2016). Use of Natural-Fiber Bio-Composites in Construction versus Traditional Solutions: Operational and Embodied Energy Assessment. Materials, 9(6), 465. doi:10.3390/ma9060465Bogoeva-Gaceva, G., Avella, M., Malinconico, M., Buzarovska, A., Grozdanov, A., Gentile, G., & Errico, M. E. (2007). Natural fiber eco-composites. Polymer Composites, 28(1), 98-107. doi:10.1002/pc.20270Peng, L., Song, B., Wang, J., & Wang, D. (2015). Mechanic and Acoustic Properties of the Sound-Absorbing Material Made from Natural Fiber and Polyester. Advances in Materials Science and Engineering, 2015, 1-5. doi:10.1155/2015/274913Benfratello, S., Capitano, C., Peri, G., Rizzo, G., Scaccianoce, G., & Sorrentino, G. (2013). Thermal and structural properties of a hemp–lime biocomposite. Construction and Building Materials, 48, 745-754. doi:10.1016/j.conbuildmat.2013.07.096Adekomaya, O., Jamiru, T., Sadiku, R., & Huan, Z. (2015). A review on the sustainability of natural fiber in matrix reinforcement – A practical perspective. Journal of Reinforced Plastics and Composites, 35(1), 3-7. doi:10.1177/0731684415611974Kadam, A., Pawar, M., Yemul, O., Thamke, V., & Kodam, K. (2015). Biodegradable biobased epoxy resin from karanja oil. Polymer, 72, 82-92. doi:10.1016/j.polymer.2015.07.002Yan, L., Chouw, N., & Jayaraman, K. (2014). Flax fibre and its composites – A review. Composites Part B: Engineering, 56, 296-317. doi:10.1016/j.compositesb.2013.08.014Wambua, P., Ivens, J., & Verpoest, I. (2003). Natural fibres: can they replace glass in fibre reinforced plastics? Composites Science and Technology, 63(9), 1259-1264. doi:10.1016/s0266-3538(03)00096-4Williams, C., Summerscales, J., & Grove, S. (1996). Resin Infusion under Flexible Tooling (RIFT): a review. Composites Part A: Applied Science and Manufacturing, 27(7), 517-524. doi:10.1016/1359-835x(96)00008-5Modi, D., Correia, N., Johnson, M., Long, A., Rudd, C., & Robitaille, F. (2007). Active control of the vacuum infusion process. Composites Part A: Applied Science and Manufacturing, 38(5), 1271-1287. doi:10.1016/j.compositesa.2006.11.012Corbière-Nicollier, T., Gfeller Laban, B., Lundquist, L., Leterrier, Y., Månson, J.-A. ., & Jolliet, O. (2001). Life cycle assessment of biofibres replacing glass fibres as reinforcement in plastics. Resources, Conservation and Recycling, 33(4), 267-287. doi:10.1016/s0921-3449(01)00089-1Del Rey, R., Alba, J., Bertó, L., & Gregori, A. (2017). Small-sized reverberation chamber for the measurement of sound absorption. Materiales de Construcción, 67(328), 139. doi:10.3989/mc.2017.0731

    Rule reactivation and capture errors in goal directed behaviour

    Get PDF
    In everyday life people may act automatically, following "unwanted" lines of action which are triggered by contextual cues and may interfere with current goals. Such occurrences are known as "capture errors" in reference to errors that occur when a more salient behaviour takes place when a similar, but less salient, action was intended. Clinical neuropsychological studies suggest that reactivation of previous rules may play an important role in behavioural interference, but such reactivation has been little studied in normal subjects and simple experimental tasks. In the present study we develop this theme, presenting data on 4 subjects who spontaneously showed capture errors in verbal fluency tasks, and developing a new experimental paradigm specifically designed to elicit such interference in normal subjects. In the new paradigm, 101 normal subjects performed a simple series of working memory tasks, including occasional stimuli whose answer matched both the current and the previous rule. We found that normal controls indeed tend to commit more mistakes after the presentation of a stimulus whose answer is consistent with a current and preceding rule. In this case, however, the errors produced are not necessarily associated with a shift back to the old rule, suggesting that rule reactivation leads to a more general interference effect. We discuss the importance of our data from both theoretical and clinical perspectives

    Natural Diagonal Riemannian Almost Product and Para-Hermitian Cotangent Bundles

    Get PDF
    We obtain the natural diagonal almost product and locally product structures on the total space of the cotangent bundle of a Riemannian manifold. We find the Riemannian almost product (locally product) and the (almost) para-Hermitian cotangent bundles of natural diagonal lift type. We prove the characterization theorem for the natural diagonal (almost) para-K\"ahlerian structures on the total spaces of the cotangent bundle.Comment: 10 pages, will appear in Czechoslovak Mathematical Journa

    Electromagnetic transitions and structure in the Z = N nucleus 46 V

    Get PDF
    The nucleus 46V has been studied in the reaction 24Mg(28Si,apn) 46V at 115 MeV beam energy, using both Au and Pb backed targets. Lifetimes were obtained for 14 levels with DSAM analysis. Experimental B (E2) reduced transition probabilities are well reproduced by the large scale shell model. The observed levels could be organizied in bands with a rather good K value.DGES PB96-5

    Antiviral Activity of Reagents in Mouth Rinses against SARS-CoV-2.

    Get PDF
    The oral cavity, an essential part of the upper aerodigestive tract, is believed to play an important role in the pathogenicity and transmission of SARS-CoV-2. The identification of targeted antiviral mouth rinses to reduce salivary viral load would contribute to reducing the COVID-19 pandemic. While awaiting the results of significant clinical studies, which to date do not exist, the commercial availability of mouth rinses leads us to search among them for reagents that would have specific antiviral properties with respect to SARS-CoV-2. The challenges facing this target were examined for 7 reagents found in commercially available mouth rinses and listed on the ClinicalTrials.gov website: povidone-iodine, chlorhexidine, hydrogen peroxide, cyclodextrin, Citrox, cetylpyridinium chloride, and essential oils. Because SARS-CoV-2 is an enveloped virus, many reagents target the outer lipid membrane. Moreover, some of them can act on the capsid by denaturing proteins. Until now, there has been no scientific evidence to recommend mouth rinses with an anti-SARS-CoV-2 effect to control the viral load in the oral cavity. This critical review indicates that current knowledge of these reagents would likely improve trends in salivary viral load status. This finding is a strong sign to encourage clinical research for which quality protocols are already available in the literature
    corecore