69 research outputs found

    Classification of sports types from tracklets

    Get PDF

    Constrained multi-target tracking for team sports activities

    Get PDF
    Abstract In sports analysis, player tracking is essential to the extraction of statistics such as speed, distance and direction of motion. Simultaneous tracking of multiple people is still a very challenging computer vision problem to which there is no satisfactory solution. This is especially true for sports activities, for which people often wear similar uniforms, move quickly and erratically, and have close interactions with each other. In this paper, we introduce a multi-target tracking algorithm suitable for team sports activities. We extend an existing algorithm by including an automatic estimation of the occupancy of the observed field and the duration of stable periods without people entering or leaving the field. This information is included as a constraint to the existing offline tracking algorithm in order to construct more reliable trajectories. On data from two challenging sports scenarios—an indoor soccer game captured with thermal cameras and an outdoor soccer training session captured with RGB camera—we show that the tracking performance is improved on all sequences. Compared to the original offline tracking algorithm, we obtain improvements of 3–7% in accuracy. Furthermore, the method outperforms two state-of-the-art trackers

    Sports Type Classification using Signature Heatmaps

    Get PDF

    Thermal Cameras and Applications:A Survey

    Get PDF

    Taking the Temperature of Sports Arenas:Automatic Analysis of People

    Get PDF

    Long-Term Occupancy Analysis using Graph-Based Optimisation in Thermal Imagery

    Get PDF
    This paper presents a robust occupancy analysis system for thermal imaging. Reliable detection of people is very hard in crowded scenes, due to occlusions and segmentation problems. We therefore propose a framework that optimises the occupancy analysis over long periods by including in-formation on the transition in occupancy, when people enter or leave the monitored area. In stable periods, with no ac-tivity close to the borders, people are detected and counted which contributes to a weighted histogram. When activity close to the border is detected, local tracking is applied in order to identify a crossing. After a full sequence, the num-ber of people during all periods are estimated using a prob-abilistic graph search optimisation. The system is tested on a total of 51,000 frames, captured in sports arenas. The mean error for a 30-minute period containing 3-13 people is 4.44 %, which is a half of the error percentage optained by detection only, and better than the results of comparable work. The framework is also tested on a public available dataset from an outdoor scene, which proves the generality of the method. 1

    Occupancy Analysis of Sports Arenas Using Thermal Imaging

    Get PDF

    Effects of Pre-processing on the Performance of Transfer Learning Based Person Detection in Thermal Images

    Get PDF
    • …
    corecore