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Constrained multi-target tracking for
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Rikke Gade* and Thomas B. Moeslund

Abstract

In sports analysis, player tracking is essential to the extraction of statistics such as speed, distance and direction of
motion. Simultaneous tracking of multiple people is still a very challenging computer vision problem to which there is
no satisfactory solution. This is especially true for sports activities, for which people often wear similar uniforms, move
quickly and erratically, and have close interactions with each other. In this paper, we introduce a multi-target tracking
algorithm suitable for team sports activities. We extend an existing algorithm by including an automatic estimation of
the occupancy of the observed field and the duration of stable periods without people entering or leaving the field.
This information is included as a constraint to the existing offline tracking algorithm in order to construct more reliable
trajectories. On data from two challenging sports scenarios—an indoor soccer game captured with thermal cameras
and an outdoor soccer training session captured with RGB camera—we show that the tracking performance is
improved on all sequences. Compared to the original offline tracking algorithm, we obtain improvements of 3–7% in
accuracy. Furthermore, the method outperforms two state-of-the-art trackers.

Keywords: Tracking people, Counting people, Sports analysis, Soccer

1 Introduction
Sports analysis is an important research field, supporting
a growing interest in data for statistical analysis of per-
formance [1]. From recreational athletes wishing to track
their own activities to professional teams, risking mil-
lions of dollars by losing a game, the interest in reliable
performance measures is huge. Creating spatio-temporal
trajectories of players is one of the essential steps in
extracting statistics such as speed, distance and direc-
tion of motion. Manual annotation of video data used to
be the only option, but it was very time-consuming and
expensive. Thanks to research in computer vision, video
analysis is increasingly automated, but even after several
years of research on tracking algorithms, consistent track-
ing of multiple people is still very challenging [2]. Human
motion can be erratic, and interactions between people
substantially complicates the task.
In this paper, we focus on the application of tracking

team sports activities. The challenges here are even more
severe due to fast and erratic motion, close interactions
between players, and the similar appearance of people.

*Correspondence: rg@create.aau.dk
Visual Analysis of People Lab, Aalborg University, Rendsburggade 14, Aalborg,
Denmark

Figure 1 shows an example image from a soccer training
session.
For tracking purposes, the optimal camera view is a

perpendicular top view. This is often not possible to
obtain, e.g. at outdoor sports fields or in temporary
indoor installations, so occlusions between people are a
major challenge. Moreover, video captured from a long
distance, with people wearing similar team uniforms,
result in nearly identical appearances. This lack of dis-
tinct appearance informationmakes re-identification after
full occlusions impossible. Thus, we must rely on motion
information, even though some activities, especially in
sports, often include fast and erratic motion. To overcome
some of these challenges, we suggest utilising the fact that
most team sports activities take place within a certain
area, often with a constant number of people present over
longer time periods.
The main contribution of this paper is a method for

improving tracking precision of sports activities and sim-
ilar activities with multiple people within a given area by
integrating an automatic and robust counting algorithm.
The estimated numbers act as constraints—guiding the
tracking algorithm in these very challenging situations.
We test the method on two challenging sports datasets
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Fig. 1 Example of an outdoor soccer training session captured by a
fisheye camera (cropped to region of interest)

with people of similar appearance, as well as a more gen-
eral tracking scenario with pedestrians in a courtyard
environment.
The remaining part of this paper consists of the

following sections: in Section 2, we discuss related
work and then provide an overview of our proposed
method in Section 3. Section 4 describes the counting
algorithm, and Section 5 describes the tracking algo-
rithm. Section 6 then combines those two methods
in a constrained tracking approach. In the second-to-
last section of the paper (7), the system is evaluated
through tests and comparisons, and Section 8 concludes
the paper.

2 Related work
Multi-target tracking is a popular area of research with
fast progression and a large number of papers published
each year [2]. Recent algorithms in this area can gener-
ally be divided into two main groups: online and offline
approaches. Online methods are recursive, relying only
on past observations, while offline approaches process a
batch of frames in each iteration. Online methods include
the classic Bayesian filters, such as Kalman filters [3] and
Particle filters [4]. These are often applied in real-time
applications, where processing time is crucial, and only
past observations are available. However, in other appli-
cations, such as analysis of motion and behaviour, a time
delay can be accepted in order to reach a higher precision.
Batch processing approaches exploit more information
and the possibility of running several iterations back and
forth in time might help avoiding tracker drift.

For multi-target tracking in RGB images, offline
approaches have become increasingly popular, due to
their superior accuracy. Compared to online (recursive)
approaches, offline methods have great advances in that
they optimise trajectories over batches of frames. These
methods all operate on a set of detections as input
and aim at reconstructing the trajectories by optimis-
ing an objective function. The main difference between
these algorithms lies in the formulation of the objec-
tive function and the strategy for optimisation. Among
others, the optimisation task has been formulated as
integer linear programme [5, 6], network flow pro-
gramme [7–10], quadratic Boolean programme [11],
energy minimisation [12, 13], generalised clique graphs
[14, 15] and maximum weight-independent set prob-
lem [16]. Other approaches include searching a hyper-
graph using a local-to-global strategy [17, 18] and using
a hierarchical association of detection responses [19].
Some work also focuses on improving the appearance
model for solving ambiguities, e.g. by implementing an
online learning approach for discriminative appearance
models [20, 21].
Despite the large amount of work conducted

in this field, big challenges still remain in many
applications due to noise and ambiguities. From
a likely noisy set of detections, the algorithm
must construct an unknown number of trajectories.
This task causes ambiguities and thereby errors or
inaccuracies.
Most work mentioned above designs algorithms for

general pedestrian tracking. Benchmark datasets within
this area often feature a continuous flow of people enter-
ing and leaving the scene. The focus of this work is
the tracking of players in team sports, which has dif-
ferent properties in people’s behaviour. One of these
properties is that people mostly stay within the tracked
area, compared to the continuous flow through the
scene seen in typical pedestrian scenarios. The spe-
cific activities observed have been taken into account in
the significant amount of research in multi-target track-
ing specifically for team sports videos [22, 23]. Recent
methods developed for team sports suggest including
context information like Game Context Features [24]
and contextual trajectory information [25], improving
tracking by modelling latent behaviour from team-level
context dynamics [26] or by improving the detection
step [27, 28].
In this work, we combine the generally well-performing

offline tracking strategy with the knowledge of a con-
stant number of players on the field over longer time
periods. Specifically, we take advantage of automatic
counting, which can help constrain the tracking prob-
lem by estimating the number of people present in
the scene.
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3 Overview
We propose a tracking algorithm for team sports applica-
tions that combines an existing counting algorithm and a
modified offline tracking algorithm. It runs in two main
iterations. The first iteration recognises time periods that
can be characterised as stable periods (no people leaving
or entering the scene) as well as estimating the probability
of a given number of people present during that period.
In the second iteration, the result is fed to a tracking algo-
rithm in order to constrain the number of trajectories
produced during each of the stable periods. The algo-
rithm is illustrated in Fig. 2. The estimated numbers found
during stable periods are fed to the tracking algorithm.
During non-stable periods, no constraint is added, leaving
the tracker to try to connect the paths using the original
algorithm.

4 Counting people
In most applications, the recorded scene consists of an
area where people move around freely and some possible
entrance/exit areas. These entrance/exit areas might be
only at the edge of the image or theremight be doors in the
scene. Assuming that people are not continuously moving
in and out of the scene, the number of people observed
in the scene will stay constant during several time peri-
ods. This is especially true in sports videos when cap-
turing a well-defined court area with a constant number
of players.
An estimation of this occupancy pattern can be calcu-

lated using the approach presented in [29], which will be
described briefly in the remaining part of this section.
First, we must try to detect all people in each

frame. As the cameras are static, background sub-
traction is applied for segmentations purposes, fol-
lowed by automatic thresholding. The resulting binary
objects are then examined and optionally split verti-
cally or horizontal if they are likely to represent more
than one person. This procedure is described in detail
in [30].

An uncertainty about whether a true person is detected
or not is related to each binary object. The probability of
being a true detection is related to the ratio of white pix-
els within the bounding box and the ratio of white pixels
observed on the edge of the bounding box. In experi-
ments, the highest probability of white pixels is found at a
ratio between 30 and 60%. Furthermore, less than 50% of
the edge is allowed to be white. The weightings related to
the ratio of white pixels in the rectangle (rr) and the ratio
of white pixels on the perimeter (rp) are described in Eq. 1:

wp(i) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if rp > 50% ‖ rr < 20%
0.8, if rr > 70%
0.9, if rr < 30% ‖ rr > 60%
1, otherwise

(1)

The weighting of each detection is combined with a
weight describing the uncertainty for each frame, caused
by occlusions and clutter. Each frame counting is weighted
like this:

wf = a ·
n∏

i=1
wp(i) + (1 − a) · ws (2)

where n is the number of people, wp(i) is the probabil-
ity of person i being a true detection (see Eq. 1), and ws
is a weight that decreases with the number of splits per-
formed, indicating how cluttered the scene is. a controls
the weighting of each part. The observed number in a
frame are added to a histogram with the weight wf , and
after a stable period has ended, the histogram is scaled to
an accumulated sum of 1. The circles in Fig. 3 illustrate the
weighted histogram for each period.
In order to split video sequences into stable and unsta-

ble periods, we must detect when people are close to the
border of the scene and therefore likely to leave or enter
the tracking area. The border and tracking areas must
be predefined manually for each scene. Periods with peo-
ple detected within the border area should be flagged
as unstable and observed for people leaving or entering

Fig. 2 Illustration of the proposed method. During the first iteration, stable periods of the video sequence are identified and the number of people
present is estimated. This is used as an input for the second iteration, in which trajectories are constructed and optimised
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Fig. 3 Example of a simple graph. Dark nodes and edges have the highest weight. Edges exist between all nodes in two consecutive periods, but to
simplify the illustration, the edges with the lowest weight are not drawn

the scene. All other periods are marked as stable periods
and should contain the same number of people until the
next period of border activity. Estimations of the number
of people leaving and entering the scene during unstable
periods are found by applying local tracking on people
within the predefined area close to the border.
Estimating the number of people is done by frame-based

detection succeeded by an graph optimisation algorithm,
based on Dijkstra’s algorithm [31]. The graph optimisa-
tion interprets the stable periods as nodes and transitions
(people leaving or entering the scene) as edges. All nodes
and edges have a weight factor based on the detection and
tracking results.
Figure 3 illustrates the graph approach. For each sta-

ble period, the number of people is represented by circles
where a darker colour indicates a higher weight. The lines
between two stable periods represent the transitions, also
coloured darker for a higher weight. The path through this
graph is optimised to the highest total weight.
For each video sequence, this counting algorithm col-

lects timestamps, numbers and probability weights, which
are then transferred to the tracking algorithm.

5 Tracking by energyminimization
As a starting point for the offline tracking algorithm, we
use the algorithm proposed by Milan et al. [13], which has
shown very good results for pedestrian tracking on pub-
lic datasets. It has publicly available source code1, which
we will use for further testing. The aim of this method is
to find the optimal solution for multi-target tracking over
an entire video sequence, given a set of coordinates for
all detections. The core part of this algorithm is to min-
imise the following global energy function, given a set of
detections X:

E(X) =Edet + αEapp + βEdyn + γEexc+
δEper + εEreg

(3)

Edet aims to keep the solution close to the detections.
Eapp utilises the appearance of different objects to dis-
ambiguate data association. Edyn is the dynamic model,
using a constant velocity model. Eexc is a mutual exclu-
sion term, introducing the physical constraint that two
objects cannot be present in the same space at the same
time. The target persistence term Eper penalises trajecto-
ries with start or end points far from the image border.
The last term Ereg is a regularisation term that favours
fewer targets and longer trajectories. For an exact defini-
tion of each term, we refer to [13]. Eapp will be discarded
in this work, as no appearance information is extracted.
Ereg is a term that considers the number of targets, and

we investigate if the constraint can be integrated in this
term. The original Ereg term proposed in [13] is defined as
follows:

Ereg(X) = N +
N∑

i=1

1
F(i)

(4)

where F is the temporal length of trajectory i in frames and
N is the total number of trajectories. Thus, the first part
of the equation infers that the energy directly increases
with the number of trajectories. The second part is the
sum of the inverse length of all trajectories; hence, in the
minimisation process, it favours long trajectories.
This tracking algorithm takes a detection file as

input; thus, it can be applied on both RGB and ther-
mal video, utilising our detection method described in
Section 4.

6 Constraining the tracking algorithm
We aim to constrain the tracking algorithm to con-
struct approximately n trajectories, where n is the number
with the highest probability, estimated by the counting
algorithm described in Section 4. Two relevant parame-
ters can intuitively be formulated: the number of targets
tracked per frame and the total number of trajecto-
ries in each stable period. Ideally, since we are only
concerned about stable periods, the total number of
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Fig. 4 A frame from the indoor thermal dataset

trajectories within a period should correspond to the
number of targets tracked in each frame. However, if
the trajectory of one person is fragmented into shorter
tracks, the total number of trajectories will increase while
the correct number of targets can still be tracked in
every frame. Likewise, if the target is lost during the
sequence, the total number of trajectories might be cor-
rect, while some frames have fewer targets. Therefore,
both measures might be valid parameters to include in the
optimisation.
In Eqs. 5 and 6, A and B represent similarity measures

between the number of targets and the estimated number,
per frame and per stable period, respectively:

A = 1
F

F∑

i=1
P(s, n(i)) (5)

B = 1
S

S∑

s=1
P(s,N(s)) (6)

where P(s, n) is a discrete probability function constructed
from the results of the counting algorithm, which returns
the probability of n number of targets in stable period
s. The number of targets is given either per frame i
in n(i) or per stable period s in N(s). F is the total
number of frames, and S is the total number of stable
periods.
Including the original two terms, we now have four

possible terms with the following purposes:

1. Minimise number of targets (orig.)
2. Maximise length of tracks (orig.)
3. Constrain number of targets per frame (A)
4. Constrain number of tracks per stable period (B)

Since we now know the estimated number of people
during each period, the original term 1, which minimises
the number of targets, conflicts with the purposes of
terms 3 and 4, which add more specific constraints on the

number. As a result, we discard term 1 and propose a new
Ereg term, including terms 2, 3 and 4:

Ereg(X) =
N∑

i=1

1
F(i)

− w1
1
F

F∑

i=1
P(s(i), n(i))

−w2
1
S

S∑

x=1
P(S(x),N(x))

(7)

A negative sign is applied to the two new terms in order
to make the optimal solution a minimum value. A weight
(w1, w2) is added to each term, adjusting the influence
from each term. These weights will be fitted during an
optimisation process, described in Section 7.

7 Evaluation
7.1 Datasets
To prove the robustness of our proposed method, we test
on two different sports datasets. One is captured with a
thermal camera at an indoor sports arena, while the other
is captured with an RGB fisheye camera at an outdoor soc-
cer field. Thermal imaging is used for privacy reasons in
the public indoor sports arena. Both datasets demonstrate
the typical challenge with the similar appearance of sports
players.

Fig. 5 Frame from the courtyard sequence
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a b

c d

e
Fig. 6 Blue solid lines represent the estimated number of people. The estimated number is only available during frames in stable periods, which are
also marked with blue on the x-axis. The red broken line is the ground truth annotated number of targets. a Indoor thermal sequence 1. b Indoor
thermal sequence 2. c Indoor thermal sequence 3. d Outdoor RGB sequence. e Courtyard thermal sequence

Table 1 Results—indoor thermal sequence 1

TP (%) FP (%) FN (%) ID switch MOTA (%)

Kalman 80.18 0.83 10.83 539 79.35

SMOT 92.35 8.88 1.30 381 83.47

Original CEM 91.43 2.22 5.70 172 89.22

Ours 93.95 1.38 2.80 195 92.57

The main dataset we use for both test and training is
the thermal data captured in an indoor sports arena. In
order to cover the entire field of 20× 40 m, three images
are captured simultaneously and stitched horizontally to
a total image size of 1920× 480 pixels. This dataset is
captured during an indoor soccer game with six to eight
players on the field in all frames. Two minutes of video
are captured and manually annotated for tracking. The
coverage is separated into four sequences of 30 s each in
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Table 2 Results—indoor thermal sequence 2

TP (%) FP (%) FN (%) ID switch MOTA (%)

Kalman 73.46 0.37 14.27 728 73.09

SMOT 95.03 17.74 0.47 267 77.29

Original CEM 89.31 0.62 8.40 136 88.68

Ours 92.82 0.30 5.03 128 92.51

order to have a temporal window manageable for a global
tracking algorithm. One sequence is used for training, and
the remaining three are used for testing. This dataset is
captured with an AXIS Q1922 LWIR sensor with approx.
25 fps. Figure 4 shows a frame from this thermal dataset.
The second dataset is 30 s of video captured at an

outdoor soccer field. Twenty-five people are present in
most frames, performing different exercises related to
soccer. The images are captured with an RGB fisheye
camera (Hikvision DS-2CD6362F-I(S)(V)) with a resolu-
tion of 2048× 2048 pixels with 15 fps. The images are
cropped to the region of interest at a final resolution of
876× 827 pixels. The dimensions of the observed field
area are 52× 68 m, and the camera is mounted approx.
10 m above the ground. Figure 1 shows a frame from
this dataset.
In addition, to show the transferability to applications

other than sports, we test the tracking algorithm on a 30-s
sequence captured in a courtyard environment with a
thermal camera of type AXIS Q1922. This is a more gen-
eral tracking scenario with small groups of pedestrians
walking in a scene with few entrance/exit areas. However,
because of the thermal sensor, the similar appearance of
people is still a significant challenge. A frame from this
dataset is shown in Fig. 5.
We find that there is a lack of publicly available team

sports datasets suitable for multi-target tracking. We will
contribute to building a wide purpose dataset by publish-
ing the thermal soccer sequences along with annotations
for tracking on our website2.

7.2 Weight parameters
The parameters of the original energy function, Eq. 3,
are adjusted to the sports scenario, where we discard
the appearance term (α) and weigh the dynamic model
(β) with 0.5, due to the erratic motion often observed

Table 3 Results—indoor thermal sequence 3

TP (%) FP (%) FN (%) ID switch MOTA (%)

Kalman 66.42 0.05 20.41 790 66.37

SMOT 94.66 18.29 0.53 288 76.38

Original CEM 86.15 0.02 10.24 217 86.13

Ours 93.78 0.07 2.32 234 93.71

Table 4 Results—outdoor RGB sequence

TP (%) FP (%) FN (%) ID switch MOTA (%)

Kalman 29.32 0 33.98 4098 29.31

SMOT 60.93 0.04 15.98 2578 60.90

Original CEM 72.83 0.01 19.42 865 72.83

Ours 77.63 0.01 15.40 779 77.62

in sports. The remaining terms are weighted equally:
α = 0,β = 0.5, γ = 1, δ = 1, ε = 1.
The weight parameters w1 and w2 introduced in

Section 5 are fitted experimentally in order to adjust the
influence of each term. We use the 30 s training sequence,
described in Section 7.1. Combinations of the following
parameter values are tested for w1 and w2: {0, 0.1, 1, 10,
20, 100, 250, 500, 750, 1000}.
The results seem to be slightly more sensitive to w1,

where the accuracy is highest at w1 = 500, while the
accuracy varies less than 0.1% with w2 values from
250 to 1000. We fix w2 = 500. The high values are
explained by non-normalised terms of the energy function.

7.3 Counting
The first iteration consists of the counting algorithm,
described in Section 4, which estimates stable and unsta-
ble periods as well as the number of people present dur-
ing stable periods. The counting algorithm is thoroughly
evaluated in [29], but we compare here the ground truth
number of targets with the estimated number for each
test sequence. Figure 6 presents the results of the count-
ing algorithm for all test sequences. The number of people
is only estimated during stable periods and plotted with
solid blue. Stable periods are also marked with blue on the
x-axis. The ground truth is plotted with a broken red line.
Figure 6 shows that sports sequences 6a–d are dom-

inated especially by stable periods, which is one of the
main reasons we propose this method for team sports
applications.

7.4 Comparison
We compare the results of our method to the original
implementation of the tracking algorithm presented in
[13]. Furthermore, we compare it to two different track-
ing algorithms suitable for multi-target tracking with

Table 5 Results—courtyard thermal sequence

TP (%) FP (%) FN (%) ID switch MOTA (%)

Kalman 87.04 0.93 4.92 432 86.11

SMOT 92.45 12.24 2.34 280 80.21

Original CEM 88.13 1.38 3.72 438 86.76

Ours 92.99 1.38 3.83 171 91.61
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objects of similar appearance. The first is an online track-
ing algorithm based on the Kalman filter, as described
and implemented in [32]. The second algorithm, called
SMOT, is a recent algorithm showing state-of-the-art
results and chosen because it is specifically aimed at
tracking objects of similar appearance [33]. We apply the

publicly available implementation of this tracker using the
IHTLS similarity method. Three parameters should be fit-
ted in order to adjust to the specific tracking scenario. We
use our 30 s training sequence for experimentally fitting
these parameters, given the following parameter values:
min_s = 0.02, hor = 5 and eta_max = 1.

Fig. 7 Frames from thermal sequence 1 (cropped); every third frame is shown. Tracking results from the original CEM tracker are visualised. a Frame 1.
b Frame 4. c Frame 7. d Frame 10. e Frame 13. f Frame 16. g Frame 19. h Frame 22. i Frame 25. j Frame 28. k Frame 31. l Frame 34
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7.5 Results
For evaluating the performance, we use the multiple
object tracking accuracy (MOTA) defined in the CLEAR
MOT metrics [34]:

MOTA = 1 −
∑

t (FNt + FPt + IDSt)
∑

t gt
(8)

where FNt , FPt and IDSt are the number of false nega-
tives, false positives and ID switches, respectively, for time
t, while gt is the true number of objects at time t.
The results are presented in Tables 1, 2, 3, 4, and 5. It is

clear for all sequences that compared to the original CEM
tracker, the number of true positives increases. For all
sports sequences, the number of false positives and false

Fig. 8 Frames from thermal sequence 1 (cropped); every third frame is shown. Tracking results from our proposed constrained tracker are visualised.
a Frame 1. b Frame 4. c Frame 7. d Frame 10. e Frame 13. f Frame 16. g Frame 19. h Frame 22. i Frame 25. j Frame 28. k Frame 31. l Frame 34
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Table 6 Comparison between the MOTA results with automatic counting results and ground truth counting results as input

Indoor thermal 1 (%) Indoor thermal 2 (%) Indoor thermal 3 (%) Outdoor RGB (%) Courtyard thermal (%)

Ours - aut. counting 92.57 92.51 93.71 77.62 91.61

Ours - GT counting 92.73 94.42 91.91 76.53 95.13

negatives also decreases. The number of ID switches
are generally high due to unpredictable motion and
a similar appearance. The final results show improve-
ments on all sequences, with a 3–7% increase in MOTA
compared to the original CEM tracker. The proposed
constrained tracker also significantly outperforms both
Kalman and SMOT trackers on all sequences. Figures 7
and 8 present a subsequence of frames with visu-
alisation of tracking results from the original CEM
tracker and our proposed constrained tracking algorithm,
respectively.
This subsequence is a typical example of how an occlu-

sion between two players is handled. As shown in Fig. 7,
the original tracker loses one of the targets (light blue
in the top right corner) between frame 10 and 25. From
frame 28, a new ID is assigned to that person. The pro-
posed constrained tracker tracks both targets throughout
the subsequence. However, the IDs switch between these
two targets once (yellow and light blue).

7.6 GT numbers
To analyse the influence of errors in the counting algo-
rithm and the possibilities of the algorithm with a per-
fect counting result, we now compare the results from
Section 7.5 with the results using ground truth numbers
as input to the constrained algorithm. These results are
presented in Table 6.
The results show that using a ground truthnumber as input

to the tracking algorithm improves MOTA 0.16–3.52%
on three sequences, while it gives a lower MOTA with
1.09–1.80% on the remaining two sequences. This indi-
cates that errors in the counting algorithm do not have
a large effect on the tracking result, as it is only imple-
mented to guide the tracker. All results in Table 6 are
better than the results produced by the original CEM
tracker.

8 Conclusion
This work focuses on a robust tracking algorithm for
team sports activities. We have shown how to combine
an automatic counting algorithm with an offline track-
ing algorithm in order to constrain the number of tracks
and improve reliability. The method is tested on four
sports sequences from both indoor and outdoor scenes
with 8 and 25 people, respectively, playing soccer and per-
forming soccer-related exercises. Furthermore, we test a
sequence of thermal video with pedestrians in a courtyard

to prove the applicability for other scenarios. All results
show superior performance compared to three state-of-
the-art trackers.
We plan to test the proposed method on sev-

eral other types of team sports and refine the algo-
rithms accordingly. For future work in this area, we
will consider integrating an automatically recognised
sports type, as prior context knowledge on the spe-
cific sports type may inform the tracker in ambiguous
situations.

Endnote
1 http://www.milanton.de/contracking/
2 http://www.vap.aau.dk/dataset/
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