11 research outputs found

    Climates of the last three interglacials in subtropical eastern Australia inferred from wetland sediment geochemistry

    No full text
    Records of Australian climate during Marine Isotope Stages 5 and 7 (130–71 and 243–191 ka) are rare, preventing detailed assessments of long-term climate, drivers and ecological responses across the continent over glacial-interglacial timescales. This study presents a geochemistry-based palaeoclimate record from Fern Gully Lagoon on North Stradbroke Island (also known as Minjerribah) in subtropical eastern Australia, which records climates in MIS 7a–c, MIS 5 and much of the Holocene, in addition to MIS 4 (71–57 ka), and parts of MIS 6, MIS 3 and MIS 2 (191–130, 57–29 and 29–14 ka). Indicators of inorganic sedimentation from a 9.5 m sediment core – focussed on high-resolution estimates of sediment geochemistry supported by x-radiography, inorganic content and magnetic susceptibility – were combined with a chronology consisting of six radiocarbon (14C) and thirteen single-grain optically stimulated luminescence (OSL) ages. Hiatuses occurred at ~178–153 ka, ~36–21 ka and ~7–2 ka and likely result from the wetland drying. Low values of locally sourced aeolian materials indicate a wet MIS 7a–c and early MIS 6 before a relatively dry MIS 5. Inorganic flux during the Holocene was up to four times greater than during MIS 5, consistent with long-term interglacial drying observed in other regions, most notably in central Australia. This study highlights the importance of employing a combination of multiple dating approaches and calibrated geochemical proxies to derive climate reconstructions and to identify depositional complexities in organic-rich wetland records.C.W. Kemp, J. Tibby, L.J. Arnold, C. Barr, P.S. Gadd, J.C. Marshall, G.B. McGregor, G.E. Jacobse

    Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils

    No full text
    Heavy metal pollution of soil is a significant environmental problem and has its negative impact on human health and agriculture. Rhizosphere, as an important interface of soil and plant, plays a significant role in phytoremediation of contaminated soil by heavy metals, in which, microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization and redox changes, and therefore, have potential to enhance phytoremediation processes. Phytoremediation strategies with appropriate heavy metal-adapted rhizobacteria have received more and more attention. This article paper reviews some recent advances in effect and significance of rhizobacteria in phytoremediation of heavy metal contaminated soils. There is also a need to improve our understanding of the mechanisms involved in the transfer and mobilization of heavy metals by rhizobacteria and to conduct research on the selection of microbial isolates from rhizosphere of plants growing on heavy metal contaminated soils for specific restoration programmes

    Oriented and Patterned Macromolecules

    No full text
    corecore