24 research outputs found

    Absence of system xc⁻ on immune cells invading the central nervous system alleviates experimental autoimmune encephalitis

    Get PDF
    Background: Multiple sclerosis (MS) is an autoimmune demyelinating disease that affects the central nervous system (CNS), leading to neurodegeneration and chronic disability. Accumulating evidence points to a key role for neuroinflammation, oxidative stress, and excitotoxicity in this degenerative process. System x(c)- or the cystine/glutamate antiporter could tie these pathological mechanisms together: its activity is enhanced by reactive oxygen species and inflammatory stimuli, and its enhancement might lead to the release of toxic amounts of glutamate, thereby triggering excitotoxicity and neurodegeneration. Methods: Semi-quantitative Western blotting served to study protein expression of xCT, the specific subunit of system x(c)-, as well as of regulators of xCT transcription, in the normal appearing white matter (NAWM) of MS patients and in the CNS and spleen of mice exposed to experimental autoimmune encephalomyelitis (EAE), an accepted mouse model of MS. We next compared the clinical course of the EAE disease, the extent of demyelination, the infiltration of immune cells and microglial activation in xCT-knockout (xCT(-/-)) mice and irradiated mice reconstituted in xCT(-/-) bone marrow (BM), to their proper wild type (xCT(+/+)) controls. Results: xCT protein expression levels were upregulated in the NAWM of MS patients and in the brain, spinal cord, and spleen of EAE mice. The pathways involved in this upregulation in NAWM of MS patients remain unresolved. Compared to xCT(+/+) mice, xCT(-/-) mice were equally susceptible to EAE, whereas mice transplanted with xCT(-/-) BM, and as such only exhibiting loss of xCT in their immune cells, were less susceptible to EAE. In none of the above-described conditions, demyelination, microglial activation, or infiltration of immune cells were affected. Conclusions: Our findings demonstrate enhancement of xCT protein expression in MS pathology and suggest that system x(c)- on immune cells invading the CNS participates to EAE. Since a total loss of system x(c)- had no net beneficial effects, these results have important implications for targeting system x(c)- for treatment of MS

    Adenosine and lymphocyte regulation

    Get PDF
    Adenosine is a potent extracellular messenger that is produced in high concentrations under metabolically unfavourable conditions. Tissue hypoxia, consequent to a compromised cellular energy status, is followed by the enhanced breakdown of ATP leading to the release of adenosine. Through the interaction with A2 and A3 membrane receptors, adenosine is devoted to the restoration of tissue homeostasis, acting as a retaliatory metabolite. Several aspects of the immune response have to be taken into consideration and even though in general it is very important to dampen inflammation, in some circumstances, such as the case of cancer, it is also necessary to increase the activity of immune cells against pathogens. Therefore, adenosine receptors that are defined as ‘sensors–of metabolic changes in the local tissue environment may be very important targets for modulation of immune responses and drugs devoted to regulating the adenosinergic system are promising in different clinical situations

    Methotrexate in combination with sulfasalazine is more effective in rheumatoid arthritis patients who failed sulfasalazine than in patients naive to both drugs.

    No full text
    Contains fulltext : 79572.pdf (publisher's version ) (Closed access)OBJECTIVES: For pharmacological reasons, the effect of the combination of MTX and SSZ may be different in RA patients who are naive to these drugs compared to patients with an insufficient response to one of them. Therefore, we compared the results of randomized controlled trials (RCTs) on the combination of MTX and SSZ in naive patients and in patients with an insufficient response to SSZ. METHODS: A systematic literature search was performed to identify RCTs that compared the MTX-SSZ combination to either drug alone. The databases MEDLINE and the Cochrane Clinical Trials registry were searched from 1966 up to April 2007. The efficacy of the single therapeutic agents or their combination was assessed using the mean change in the disease activity score (DAS) and the ACR improvement criteria. RESULTS: Four RCTs were identified to compare the efficacy of the combination MTX-SSZ to the efficacy of either drug alone. Two parallel trials were performed with patients naive to both drugs and two add-on trials were performed in SSZ failures. In the trials with naive patients, the mean DAS changes for the combination MTX and SSZ pointed to a sub-additive efficacy. In the trials with patients who previously failed to SSZ, the mean DAS changes for the combination MTX and SSZ indicated additive efficacy. CONCLUSIONS: In RA, addition of MTX to SSZ is a therapeutic option in SSZ failures, whereas combination of MTX and SSZ in DMARD-naive patients has no added value

    Strategies toward rheumatoid arthritis therapy; the old and the new

    No full text
    Currently, medications used to treat rheumatoid arthritis (RA) are glucocorticoids (GCs) and nonsteroidal anti-inflammatory drugs (NSAIDs), predominantly used for controlling the pain and inflammation, disease-modifying antirheumatic drugs (DMARDs), administered as first-line medication for newly diagnosed RA cases, and biological therapies, used to target and inhibit specific molecules of the immune and inflammatory responses. NSAIDs and other GCs are effective in alleviating the pain, inflammation, and stiffness due to RA. DMARDs that are used for RA therapy are hydroxychloroquine, methotrexate, leflunomide, and sulfasalazine. The biological therapies, on the contrary, are chimeric anti-CD20 monoclonal antibody, rituximab, inhibitors of tumor necrosis factor-α (TNF-α) like etanercept, infliximab, and adalimumab, a recombinant inhibitor of interleukin-1 (IL-1), anakinra, and costimulation blocker, abatacept. Moreover, newly under evaluation biological therapies include new TNF-α inhibitors, JAK inhibitors, anti-interleukin-6-receptor monoclonal antibodies (mABs), and antibodies against vital molecules involved in the survival and development of functional B cells. The new strategies to treat RA has improved the course of the disease and most of the patients are successful in remission of the clinical manifestations if the diagnosis of the disease occur early. The probability of remission increase if the diagnosis happens rapidly and treat-to-target approach are implemented. In this review article, we have attempted to go through the treatment strategies for RA therapy both the routine ones and those which have been developed over the past few years and currently under investigatio
    corecore