872 research outputs found

    Cu_{2}O as nonmagnetic semiconductor for spin transport in crystalline oxide electronics

    Full text link
    We probe spin transport in Cu_{2}O by measuring spin valve effect in La_{0.7}Sr_{0.3}MnO_{3}/Cu_{2}O/Co and La_{0.7}Sr_{0.3}MnO_{3}/Cu_{2}O/La_{0.7}Sr_{0.3}MnO_{3} epitaxial heterostructures. In La_{0.7}Sr_{0.3}MnO_{3}/Cu_{2}O/Co systems we find that a fraction of out-of-equilibrium spin polarized carrier actually travel across the Cu_{2}O layer up to distances of almost 100 nm at low temperature. The corresponding spin diffusion length dspin is estimated around 40 nm. Furthermore, we find that the insertion of a SrTiO_{3} tunneling barrier does not improve spin injection, likely due to the matching of resistances at the interfaces. Our result on dspin may be likely improved, both in terms of Cu_{2}O crystalline quality and sub-micrometric morphology and in terms of device geometry, indicating that Cu_{2}O is a potential material for efficient spin transport in devices based on crystalline oxides.Comment: 15 pages, 10 figure

    Analysis of the Energy Consumption of a Novel DC Power Supplied Industrial Robot

    Get PDF
    The energy consumption and electrical characteristics of a novel direct current (DC) power supplied industrial robot prototype are compared and analyzed with a state of the art alternating current (AC) supplied industrial robot. An extensive set of experiments shows an important reduction of the total energy consumption for different electrical power profiles measured in various robot trajectories with specific working temperatures. The recuperated energy is also analyzed in the different scenarios. Experimental results show that a DC type robot can be up to 12.5% more energy-efficient than an equivalent AC type robot

    Virtual Prototyping of a Flexure-based RCC Device for Automated Assembly

    Get PDF
    The actual use of Industrial Robots (IR) for assembly systems requires the exertion of suitable strategies allowing to overcome shortcomings about IR poor precision and repeatability. In this paper, the practical issues that emerge during common \ue2\u80\u9cpeg-in-hole\ue2\u80\u9d assembly procedures are discussed. In particular, the use of passive Remote Center of Compliance (RCC) devices, capable of compensating the IR non-optimal performance in terms of repeatability, is investigated. The focus of the paper is the design and simulation of a flexure-based RCC that allows the prevention of jamming, due to possible positioning inaccuracies during peg insertion. The proposed RCC architecture comprises a set of flexural hinges, whose behavior is simulated via a CAE tool that provides built-in functions for modelling the motion of compliant members. For given friction coefficients of the contact surfaces, these numerical simulations allow to determine the maximum lateral and angular misalignments effectively manageable by the RCC device

    Editorial: Breeding Innovations in Underutilized Temperate Fruit Trees

    Get PDF
    The recent growing interest in minor species (i.e., fig, pomegranate, feijoa, etc.) has recently driven new research on breeding and genetics to address producer and consumer traits. Since these species have received little attention from the scientific community, they were less improved via conventional breeding, and lacked detailed genomic information on important traits. This lack of data, together with a general poor genetic knowledge of these species, has limited a wider cultivation of varieties with improved characteristics

    Comparison of Lipoprotein Based Insulin Resistance Score and Traditional Risk Factors in Adolescents with Obesity

    Get PDF
    Click the PDF icon to download the abstract

    Origin of interface magnetism in BiMnO3/SrTiO3 and LaAlO3/SrTiO3 heterostructures

    Get PDF
    Possible ferromagnetism induced in otherwise non-magnetic materials has been motivating intense research in complex oxide heterostructures. Here we show that a confined magnetism is realized at the interface between SrTiO3 and two insulating polar oxides, BiMnO3 and LaAlO3. By using polarization dependent x-ray absorption spectroscopy, we find that in both cases the magnetic order is stabilized by a negative exchange interaction between the electrons transferred to the interface and local magnetic moments. These local magnetic moments are associated to Ti3+ ions at the interface itself for LaAlO3/SrTiO3 and to Mn3+ ions in the overlayer for BiMnO3/SrTiO3. In LaAlO3/SrTiO3 the induced magnetic moments are quenched by annealing in oxygen, suggesting a decisive role of oxygen vacancies in the stabilization of interfacial magnetism.Comment: 5 pages, 4 figure

    Prediction of Adverse Glycemic Events from Continuous Glucose Monitoring Signal

    Get PDF
    The most important objective of any diabetes therapy is to maintain the blood glucose concentration within the euglycemic range, avoiding or at least mitigating critical hypo/hyperglycemic episodes. Modern continuous glucose monitoring (CGM) devices bear the promise of providing the patients with an increased and timely awareness of glycemic conditions as these get dangerously near to hypo/hyperglycemia. The challenge is to detect, with reasonable advance, the patterns leading to risky situations, allowing the patient to make therapeutic decisions on the basis of future (predicted) glucose concentration levels. We underline that a technically sound performance comparison of the approaches proposed in recent years has yet to be done, thus it is unclear which one is preferred. The aim of this study is to fill this gap by carrying out a comparative analysis among the most common methods for glucose event prediction. Both regression and classification algorithms have been implemented and analyzed, including static and dynamic training approaches. The dataset consists of 89 CGM time series measured in diabetic subjects for 7 subsequent days. Performance metrics, specifically defined to assess and compare the event-prediction capabilities of the methods, have been introduced and analyzed. Our numerical results show that a static training approach exhibits better performance, in particular when regression methods are considered. However, classifiers show some improvement when trained for a specific event category, such as hyperglycemia, achieving performance comparable to the regressors, with the advantage of predicting the events sooner. © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    How to choose a good marker to analyze the olive germplasm (Olea europaea l.) and derived products

    Get PDF
    The olive tree (Olea europaea L.) is one of the most cultivated crops in the Mediterranean basin. Its economic importance is mainly due to the intense production of table olives and oil. Cultivated varieties are characterized by high morphological and genetic variability and present a large number of synonyms and homonyms. This necessitates the introduction of a rapid and accurate system for varietal identification. In the past, the recognition of olive cultivars was based solely on analysis of the morphological traits, however, these are highly influenced by environmental conditions. Therefore, over the years, several methods based on DNA analysis were developed, allowing a more accurate and reliable varietal identification. This review aims to investigate the evolving history of olive tree characterization approaches, starting from the earlier morphological methods to the latest technologies based on molecular markers, focusing on the main applications of each approach. Furthermore, we discuss the impact of the advent of next generation sequencing and the recent sequencing of the olive genome on the strategies used for the development of new molecular markers
    • …
    corecore