22 research outputs found

    FOXO1 represses PPARα-Mediated induction of FGF21 gene expression

    Get PDF
    Fibroblast growth factor 21 (FGF21) has emerged as a metabolic regulator that exerts potent anti-diabetic and lipid-lowering effects in animal models of obesity and type 2 diabetes, showing a protective role in fatty liver disease and hepatocellular carcinoma progression. Hepatic expression of FGF21 is regulated by PPARa and is induced by fasting. Ablation of FoxO1 in liver has been shown to increase FGF21 expression in hyperglycemia. To better understand the role of FOXO1 in the regulation of FGF21 expression we have modified HepG2 human hepatoma cells to overexpress FoxO1 and PPARa. Here we show that FoxO1 represses PPARa-mediated FGF21 induction, and that the repression acts on the FGF21 gene promoter without affecting other PPARa target genes. Additionally, we demonstrate that FoxO1 physically interacts with PPARa and that FoxO1/3/4 depletion in skeletal muscle contributes to increased Fgf21 tissue levels. Taken together, these data indicate that FOXO1 is a PPARa-interacting protein that antagonizes PPARa activity on the FGF21 promoter. Because other PPARa target genes remained unaffected, these results suggest a highly specific mechanism implicated in FGF21 regulation. We conclude that FGF21 can be specifically modulated by FOXO1 in a PPARa-dependent manner. (c) 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).info:eu-repo/semantics/publishedVersio

    N‐myc downstream regulated family member 1 ( <scp>NDRG1</scp> ) is enriched in myelinating oligodendrocytes and impacts myelin degradation in response to demyelination

    No full text
    International audienceThe N-myc downstream regulated gene family member 1 (NDRG1) is a gene whose mutation results in peripheral neuropathy with central manifestations. While most of previous studies characterized NDRG1 role in Schwann cells, the detection of central nervous system symptoms and the identification of NDRG1 as a gene silenced in the white matter of multiple sclerosis brains raise the question regarding its role in oligodendrocytes. Here, we show that NDRG1 is enriched in oligodendrocytes and myelin preparations, and we characterize its expression using a novel reporter mouse (TgNdrg1-EGFP). We report NDRG1 expression during developmental myelination and during remyelination after cuprizone-induced demyelination of the adult corpus callosum. The transcriptome of Ndrg1-EGFP+ cells further supports the identification of late myelinating oligodendrocytes, characterized by expression of genes regulating lipid metabolism and bioenergetics. We also generate a lineage specific conditional knockout (Olig1 cre/+ ;Ndrg1 fl/fl) line to study its function. Null mice develop normally, and despite similar numbers of progenitor cells as wild type, they have fewer mature oligodendrocytes and lower levels of myelin proteins than controls, thereby suggesting NDRG1 as important for the maintenance of late myelinating oligodendrocytes. In addition, when control and Ndrg1 null mice are subject to cuprizoneinduced demyelination, we observe a higher degree of demyelination in the mutants. Together these data identify NDRG1 as an important molecule for adult myelinating oligodendrocytes, whose decreased levels in the normal appearing white matter of human MS brains may result in greater susceptibility of myelin to damage
    corecore