2,375 research outputs found

    Combining Neuro-Fuzzy Classifiers for Improved Generalisation and Reliability

    Get PDF
    In this paper a combination of neuro-fuzzy classifiers for improved classification performance and reliability is considered. A general fuzzy min-max (GFMM) classifier with agglomerative learning algorithm is used as a main building block. An alternative approach to combining individual classifier decisions involving the combination at the classifier model level is proposed. The resulting classifier complexity and transparency is comparable with classifiers generated during a single crossvalidation procedure while the improved classification performance and reduced variance is comparable to the ensemble of classifiers with combined (averaged/voted) decisions. We also illustrate how combining at the model level can be used for speeding up the training of GFMM classifiers for large data sets

    Data Editing for Neuro-Fuzzy Classifiers

    Get PDF
    In this paper we investigate the potential benefits and limitations of various data editing procedures when constructing neuro-fuzzy classifiers based on hyperbox fuzzy sets. There are two major aspects of data editing which we are attempting to exploit: a) removal of outliers and noisy data; and b) reduction of training data size. We show that successful training data editing can result in constructing simpler classifiers (i.e. a classifier with a smaller number and larger hyperboxes) with better generalisation performance. However we also indicate the potential dangers of overediting which can lead to dropping the whole regions of a class and constructing too simple classifiers not able to capture the class boundaries with high enough accuracy. A more flexible approach than the existing data editing techniques based on estimating probabilities used to decide whether a point should be removed from the training set has been proposed. An analysis and graphical interpretations are given for the synthetic, non-trivial, 2-dimensional classification problems

    Learning Hybrid Neuro-Fuzzy Classifier Models From Data: To Combine or Not to Combine?

    Get PDF
    To combine or not to combine? Though not a question of the same gravity as the Shakespeare’s to be or not to be, it is examined in this paper in the context of a hybrid neuro-fuzzy pattern classifier design process. A general fuzzy min-max neural network with its basic learning procedure is used within six different algorithm independent learning schemes. Various versions of cross-validation, resampling techniques and data editing approaches, leading to a generation of a single classifier or a multiple classifier system, are scrutinised and compared. The classification performance on unseen data, commonly used as a criterion for comparing different competing designs, is augmented by further four criteria attempting to capture various additional characteristics of classifier generation schemes. These include: the ability to estimate the true classification error rate, the classifier transparency, the computational complexity of the learning scheme and the potential for adaptation to changing environments and new classes of data. One of the main questions examined is whether and when to use a single classifier or a combination of a number of component classifiers within a multiple classifier system

    Combining Labelled and Unlabelled Data in the Design of Pattern Classification Systems

    Get PDF
    There has been much interest in applying techniques that incorporate knowledge from unlabelled data into a supervised learning system but less effort has been made to compare the effectiveness of different approaches on real world problems and to analyse the behaviour of the learning system when using different amount of unlabelled data. In this paper an analysis of the performance of supervised methods enforced by unlabelled data and some semisupervised approaches using different ratios of labelled to unlabelled samples is presented. The experimental results show that when supported by unlabelled samples much less labelled data is generally required to build a classifier without compromising the classification performance. If only a very limited amount of labelled data is available the results show high variability and the performance of the final classifier is more dependant on how reliable the labelled data samples are rather than use of additional unlabelled data. Semi-supervised clustering utilising both labelled and unlabelled data have been shown to offer most significant improvements when natural clusters are present in the considered problem

    Analysis of the Correlation Between Majority Voting Error and the Diversity Measures in Multiple Classifier Systems

    Get PDF
    Combining classifiers by majority voting (MV) has recently emerged as an effective way of improving performance of individual classifiers. However, the usefulness of applying MV is not always observed and is subject to distribution of classification outputs in a multiple classifier system (MCS). Evaluation of MV errors (MVE) for all combinations of classifiers in MCS is a complex process of exponential complexity. Reduction of this complexity can be achieved provided the explicit relationship between MVE and any other less complex function operating on classifier outputs is found. Diversity measures operating on binary classification outputs (correct/incorrect) are studied in this paper as potential candidates for such functions. Their correlation with MVE, interpreted as the quality of a measure, is thoroughly investigated using artificial and real-world datasets. Moreover, we propose new diversity measure efficiently exploiting information coming from the whole MCS, rather than its part, for which it is applied

    Forecasting and Forecast Combination in Airline Revenue Management Applications

    Get PDF
    Predicting a variable for a future point in time helps planning for unknown future situations and is common practice in many areas such as economics, finance, manufacturing, weather and natural sciences. This paper investigates and compares approaches to forecasting and forecast combination that can be applied to service industry in general and to airline industry in particular. Furthermore, possibilities to include additionally available data like passenger-based information are discussed

    An Overview of Classifier Fusion Methods

    Get PDF
    A number of classifier fusion methods have been recently developed opening an alternative approach leading to a potential improvement in the classification performance. As there is little theory of information fusion itself, currently we are faced with different methods designed for different problems and producing different results. This paper gives an overview of classifier fusion methods and attempts to identify new trends that may dominate this area of research in future. A taxonomy of fusion methods trying to bring some order into the existing “pudding of diversities” is also provided

    An Overview of Classifier Fusion Methods

    Get PDF
    A number of classifier fusion methods have been recently developed opening an alternative approach leading to a potential improvement in the classification performance. As there is little theory of information fusion itself, currently we are faced with different methods designed for different problems and producing different results. This paper gives an overview of classifier fusion methods and attempts to identify new trends that may dominate this area of research in future. A taxonomy of fusion methods trying to bring some order into the existing “pudding of diversities” is also provided

    Integrated Neural Based System for State Estimation and Confidence Limit Analysis in Water Networks

    Get PDF
    In this paper a simple recurrent neural network (NN) is used as a basis for constructing an integrated system capable of finding the state estimates with corresponding confidence limits for water distribution systems. In the first phase of calculations a neural linear equations solver is combined with a Newton-Raphson iterations to find a solution to an overdetermined set of nonlinear equations describing water networks. The mathematical model of the water system is derived using measurements and pseudomeasurements consisting certain amount of uncertainty. This uncertainty has an impact on the accuracy to which the state estimates can be calculated. The second phase of calculations, using the same NN, is carried out in order to quantify the effect of measurement uncertainty on accuracy of the derived state estimates. Rather than a single deterministic state estimate, the set of all feasible states corresponding to a given level of measurement uncertainty is calculated. The set is presented in the form of upper and lower bounds for the individual variables, and hence provides limits on the potential error of each variable. The simulations have been carried out and results are presented for a realistic 34-node water distribution network

    Do We Need Experts for Time Series Forecasting?

    Get PDF
    This study examines a selection of off-the-shelf forecastingand forecast combination algorithms with a focus on assessing their practical relevance by drawing conclusions for non-expert users. Some of the methods have only recently been introduced and have not been part in comparative empirical evaluations before. Considering the advances of forecasting techniques, this analysis addresses the question whether we need human expertise for forecasting or whether the investigated methods provide comparable performance
    corecore