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Abstract. Predicting a variable for a future point in time helps planning for unknown 
future situations and is common practice in many areas such as economics, finance, 
manufacturing, weather and natural sciences. This paper investigates and compares 
approaches to forecasting and forecast combination that can be applied to service 
industry in general and to airline industry in particular. Furthermore, possibilities to 
include additionally available data like passenger-based information are discussed.  
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1 Introduction 
Modern revenue management systems significantly increase revenues of airline 
companies. Airline tickets are usually sold for several booking classes differing in price 
and booking conditions. Passengers buying higher class tickets are willing to pay a 
higher price and thus contribute more to airline revenues than low fare passengers, 
which is why airlines would like to give priority to them. However, those higher class 
bookings usually arrive quite shortly before departure, so it becomes necessary to 
forecast the demand for higher class tickets to be able to reserve an appropriate number 
of tickets. 

Two variables are important for this task: the demand and the cancellation rate for 
airline tickets. A collaboration between Bournemouth University and Lufthansa 
Systems Berlin in a previous project showed promising results and significant 
improvements for forecasting the demand using novel forecast combination approaches 
([1], [2], [3]). A new project whose first results are presented in this paper aims at 
investigating if similar improvements can be achieved for cancellation rates.  
 
1.1 Airline Revenue Management 

Revenue management tries to maximise profits by investigating and forecasting 
customer behaviour and drawing appropriate conclusions. In the airline industry, the 
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central objective of revenue management is determining how many seats for each 
booking class should be sold prior to departure. The risk of rejecting a booking in a low 
class in order to wait for a higher class booking has to be judged. Forecasting of ticket 
demand with corresponding no-show and cancellation rates are a crucial component to 
this. McGill and van Ryzin give an extensive review of research in airline revenue 
management [4]. One of the fundamental developments described is abandoning 
traditional single-leg approaches only considering individual flights in favour of so 
called Origin and Destination (O&D) approaches, which work combinations of all 
connections, itineraries and booking classes. 

Forecasting has a long track record in airline industry, mainly because forecasting 
future demand has a direct influence on the booking limits for the different fare classes 
[4]. Fully occupied flights are of both ecological and economical interest; but a number 
of seats usually stay unoccupied even on sold-out flights due to cancellations or so 
called no-show passengers. Forecasting in this context is a crucial help for a reasonable 
overbooking, finding a balance between the number of unoccupied seats and the number 
of denied boardings.  

The state-of-the-art method for forecasting demand and cancellation rates uses a 
statistical model that takes the currently observed rate and the reference rates obtained 
from historically similar flights into account. Several approaches can be pursued when 
trying to improve a forecast; two have been identified in the scope of this work: 
employing and improving traditional time series methods and extracting information 
about customer behaviour. 
 
1.2 Traditional time-series forecasting 

Forecasting and forecast combination is a well-researched area ([5], [6], [7]). Time 
series forecasting looks at sequences of data points, trying to identify patterns and 
regularities in their behaviour that might also apply to future values. A large number of 
time series forecasting methods with different degrees of flexibility and complexity are 
available; consequently, there are many ways to generate forecasts and one might end 
up with more than one forecast for the same problem. This leads to the question, 
whether or not some or all of the individual forecasts can be combined to obtain a 
superior forecast. General forecasting and forecast combination methods are discussed 
in the sections two and three of this paper, section four gives an empirical evaluation of 
popular and easy-to-use approaches.  

 
1.3 Passenger-based predicting 

In many real world applications, information that goes beyond ordinary time series data 
is often available. In services industry, data is often collected on a customer basis and 
can be utlised with data mining methods that help modelling and understanding various 
groups of customer behaviour. For example, data mining is used for customer 
relationship management in retail industry ([8]), for credit card fraud detection ([9]) or 
for market basket analysis identifying associations between buying choices of 
customers ([10]). 



In the last years, a few publications suggest that including information gained from 
so-called Passenger Name Records (PNR) in airline forecasting applications might be 
beneficial. In [11] and  [12], Neuling et al. and Lawrence et al. look at forecasting no-
show rates, i.e. the rate of passengers who book a ticket and fail to show up for a flight 
without cancelling it. Both publications find that making use of PNR data improves 
forecasting performance compared to pure time series approaches. 
 
2 Forecasting 
This section describes a selection of popular time series forecasting techniques inspired 
by a book of Makridakis et al. ([5]). It provides the background for the further sections 
of this paper. In the formulas used, the time series will have the past 
observations{ }tyy ,..,1  and the one-step-ahead forecast to calculate will be denoted 
by 1ˆ +ty .  
 
2.1 Averaging and smoothing 

A simple approach to forecasting is taking the arithmetic mean of the k most recent 
values of the time series as shown in formula (2-1). In that way, old and potentially 
inapplicable values can be discarded. 
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Exponential smoothing methods apply weights that decay exponentially with time and 
thus also rely on the assumption that more recent observations are likely to be more 
important for a forecast than those lying further in the past. Single exponential 
smoothing as the simplest representative of smoothing methods is calculated by the 
previous forecast adjusted by the error it produced, see formula (2-2). The 
parameterα controls the extent of the adjustment. 
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Many extensions and variations to the basic smoothing algorithm have been proposed, 
see for example [13]. 
 
2.2 Regression 

Regression approaches express a forecast or dependent variable as a function of one or 
more independent or explanatory variables that relate to the outcome. Simple linear 
regression on a single variable x can be expressed with formula (2-3), where a is the 
intercept, b the slope of the line and ε the error, that originates from the deviation of the 
linear relationship from the actual observation.  

ε++= bxay  (2-3) 

In the case of time series, x denotes the time index. The parameters of the regression 
can be estimated using standard least squares approaches. 



 
2.3 Decomposition and Theta-Model 

Decomposition aims at isolating components of a time series, projecting them 
separately into the future and then recombining them to produce a final forecast. The 
components are traditionally  

- a trend-cycle, denoting long-term changes,  
- seasonality, reflecting shorter-term constant-length changes like months or 

holiday times and  
- an irregular or random error component. 

 
Recently, Assimakopoulos and Nikolpoulos proposed the Theta-model in [14]. It 
decomposes seasonally adjusted series into short and long term components by applying 
a coefficient θ  to the second order differences of the time series as shown in formula 
(2-4), thus modifying the curvature of the time series. 

originalnew yy ''*)('' θθ =  (2-4) 

Theta values bigger than one dilate the series, amplifying its short term-behaviour, 
while theta values between zero and one have the opposite effect.  
 
2.4 ARIMA  

Autoregressive integrated moving average models (ARIMA) according to [15] are a 
powerful and complex tool of modelling and forecasting time series. They are described 
by the notation ARIMA (p,d,q) and consist of the following three parts: 

1. AR(p) denotes an autoregressive part of order p , autoregression is a regression 
where the target variable depends on  time-lagged values of itself.  

2. I(d) defines the degree of differencing involved. Differencing is a method of 
removing non-stationarity by calculating the change between each observation. 

3. MA(q) indicates the order of the moving average part of the model, which is 
given as a moving average of the error series. It can be described as a regression 
against the past error values of the series. 

 
2.5 Nonlinear Forecasting 

Regime switching models are a popular class of nonlinear forecasting methods, 
combining two or more sets of model coefficients in one system. Which set to apply for 
a forecasting situation is then determined by looking at the regime or state the system is 
likely to be in. A simple example for a model with two autoregressive regimes of order 
one and the parameters χβα ,, ii , the error component iε and the observable 
variable z that governs the change of regimes can be found in formula (2-5). 
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Smooth switching of regimes in so called smooth transition autoregressive (STAR) 
models addresses issues that arise from abruptly changing regimes in the simple model. 
A survey of recent developments in this area is given in [16]. 
 Regime switching models are a model-driven approach. Artificial neural networks can 
be used for data-driven forecasting, with the advantage of not having to choose an 
appropriate model for each problem. For time series forecasting, time lagged 
observations and time indices can be used as input variables, obtaining the forecast as 
an output. Neural networks have been frequently and successfully used for forecasting 
purposes, a summary of work done in this area can be found in [17]. 
 
2.6 Discussion 

Time series forecasting has been extensively researched in the last 40 years and a large 
number of empirical studies have been conducted to compare out-of-sample accuracy of 
various methods. Among the biggest forecasting competitions are the three so called M-
competitions, consisting of the M-competition 1982, the M2-competition in 1993 and 
the M3-competition in 2000. All three of them confirmed the same general results, as 
summarised in [18]. 

1. Statistically complex models like ARIMA do not necessarily outperform less 
sophisticated approaches like exponential smoothing. 

2. Forecasting performance depends on the accuracy measure used. 
3. Forecasting performance depends on different time horizons. 
4. Combinations of forecasts do on average outperform the individual methods. 

Especially conclusion number one has been subject to fierce discussions, many of them 
disagreeing on the fundamental question of whether or not empirical evaluations are an 
appropriate measure for the performance of a model. In [18], Makridakis and Hibon 
strongly criticise the approach of building statistically complex models, disregarding all 
empirical evidence that simpler ones predict the future just as well or even better in real 
life situations. In [5] it is furthermore added, that the only advantage a sophisticated 
model has compared to a simple one is the ability to better fit historical data, which is 
no guarantee for a better out-of-sample performance. In [19], Sandy D. Balkin criticises 
the choice of the M3-competition data sets as originating mostly from financial and 
economic time series and probably not containing enough complex structures that could 
favour more sophisticated models. Keith Ord adds in the same publication, that ARIMA 
models need at least 50 observations to be efficiently estimated, which is a requirement 
that is often violated. 

Another extensive empirical study has been carried out by Stock and Watson in [20], 
using 215 U.S. macroeconomic series, comparing 49 linear and nonlinear forecasting 
methods. Looking at the nonlinear methods, they found that neural networks performed 
well for one-period-ahead forecasting, while showing deteriorating performance with 
increasing forecasting horizons. A smooth transition autoregression model performed 
generally worse than the neural networks. No clear-cut winner could be identified 
comparing nonlinear methods to linear ones, as the forecasting accuracy differed 
significantly across forecast horizons and series. In [21] however, the results of this 
study are questioned by stating that nonlinear forecasting methods should only be 



considered at all if the data shows nonlinear characteristics. They furthermore criticise 
carelessness in the parameterisation of the nonlinear methods being examined in the 
study. A re-examination of the performances of linear and nonlinear approaches on time 
series that rejected the statistical test for linearity has consequently been carried out 
using seven macroeconomic time series. The results, albeit carefully considering 
suitable model parameterisation, do not overly favour nonlinear models. A STAR model 
and one of the two examined neural networks had a slightly better performance than 
linear models, the second neural network had not. 

Summarising, the results of the enormous amount of empirical studies have been 
mixed and sometimes contradictory; no single best general method could be clearly 
identified. In ([19]), Keith Ord suggests a rough guideline which method to choose. 
Generally, a small number of observations, very erratic process behaviour and no or 
weak seasonal pattern for a given time series are strong indicators that simple methods 
should be used. As the number of observations grows and the series exhibit a stable 
stochastic and a strong seasonal pattern, statistical criteria and contextual information 
should be used to identify an appropriate, possibly sophisticated model. 

 
3 Forecast Combination 
Since the publication of the seminal paper on forecast combination by Bates and 
Granger in 1969 ([22]), research in this area has been active; recent reviews and 
summaries can be found in [6] and [7]. In general, four main reasons for the potential 
benefits of forecast combinations have been identified: 

1. It is implausible to be able to correctly model a true data generation process in 
only one model. Single models are most likely to be simplifications of a much 
more complex reality, so different models might be complementary to each other 
and be able to approximate the true process better.  

2. Even if a single best model is available, a lot of specialist knowledge is required 
in most cases to find the right functions and parameters. Forecast combinations 
help achieving good results without in-depth knowledge about the application and 
without time consuming, computationally complex fine-tuning of a single model. 

3. It is not always feasible to take all the information an individual forecast is based 
on into account and create a superior model, because information may be private, 
unobserved or provided by a closed source.  

4. Individual models may have different speeds to adapt to changes in the data 
generation process. Those changes are difficult to detect in real time, which is 
why a combination of forecasts with different abilities to adapt might perform 
well. 

This section presents forecast combination methods and provides a summary and 
discussion of empirical evaluations to assess their quality. 
 
3.1 Linear Forecast Combination 

The linear combination of forecasts calculates a combined forecast cŷ  as the weighted 
sum of m individual forecasts{ }myy ˆ,..,ˆ1  as shown in equation (3-1). 
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Weights can be estimated in various ways. One easy and often remarkably robust 
example is the simple average combination with equal weights.  
 The optimal model proposed in [22] calculates weights using formula (3-2), 
whereΣ denotes the covariance matrix of the m different forecast errors and e the 1×n  
unit vector. 
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A variance based approach first mentioned by Bates and Granger in [22] and further 
extended by Newbold and Granger in [23] uses the average of the sum of the past 
squared forecast errors ( MSE ) over a certain period of time as shown in formula (3-3). 
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Granger and Ramanathan propose the regression method in [24] and treat individual 
forecasts as regressors in an ordinary least squares regression including a constant. 

Another group of linear forecasting methods does not estimate a covariance matrix or 
rely on past error values. In a rank-based approach according to Bunn ([25]), each 
combination weight is expressed as the likelihood that the corresponding forecast is 
going to outperform the others, based on the number of times where it performed best in 
the past. Gupta and Wilton additionally consider relative performance of other models 
using a matrix with pair-wise odd ratios in [26]. Each element of the matrix represents 
the probability that the model of the corresponding line will outperform the model on 
the corresponding column.  

 
3.2 Nonlinear Forecast Combination 

Potentially nonlinear relationships among forecasts are not considered in linear forecast 
combination, providing the main argument for usage of nonlinear combination methods. 
 The most investigated nonlinear method for forecast combination are back-
propagation feedforward neural networks, where individual forecasts are input data and 
the combined forecast is obtained as the output. This method was first mentioned by Shi 
and Liu in [27] and was also used in [28] and [29]. 
 Fuzzy systems for forecast combination can be found following two different 
paradigms. First, fuzzy systems can be seen as a kind of regime model similar to the one 
described in section 2.5, where two or more different forecasting models can be active 
at one time ([30]). In an empirical evaluation in the same paper, the resulting fuzzy 
system almost always outperforms or draws level with the individual forecasts and 
linear forecast combination methods investigated. Two more publications emphasise a 
different aspect of fuzzy systems - the possibility of modelling linguistic and subjective 
knowledge ([31], [32]). Combining expert forecasts with traditional time series forecasts 
resulted in significant performance gains in both publications. 
  In [33], He and Xu present a self-organizing algorithm based on the Group Method 
of Data Handling (GMDH) method which was proposed by Ivakhnenko in the 1970s 



([34]). Individual forecasts are taken as an input variable for the algorithm, different 
transfer functions, usually polynomials, then create intermediate model candidates for 
the first layer. Iteratively, the best models are selected with an external criterion and 
used as input variables for the next layer, producing more complex model candidates 
until the best model is found.  
 Several authors favour the approach of pooling forecasts before combining them. By 
grouping similar forecasts and subsequently combining the pooled forecasts, several 
issues like increased weight estimation errors because of a high number of forecasts to 
combine can be addressed. Research in this area recently started with clustering 
forecasts based on their recent past’s error variance in [35] and continued with 
investigations by Riedel and Gabrys on how to extend and modify the clustering criteria 
in the context of a big pool of individual forecasts that have been diversified by 
different methods in [2] and [3]. The tree-like structures of these multi-level multi-step 
forecast combinations can be evolved with genetic programming, using the quality of 
the combined predictions on the validation data as the fitness function to optimize. 
 
3.3 Adaptive forecast combination 

A constantly changing environment is a typical characteristic for an area in which 
forecasts are applied. Assuming that no individual model can be a perfect model of the 
true data generation process and considering that each individual model has a different 
speed to adapt to changes, there is a reason to believe that forecast combination will 
perform well wherever adaptivity is needed.  

Taking into account the fact that the performance of individual forecasts changes over 
time, time varying combination weights have been investigated. One of the initial 
papers on that matter [36] proposes modelling a bigger impact of more recent 
observations and letting the combination weights be a function of time. One plausible 
method in the context of regression and variance-covariance based methods is using a 
moving window of fixed size to determine the number of latest data collection points to 
include in the calculation, as first thought of by Bates and Granger in [22] and Granger 
and Ramanathan in [24]. Structural breaks can degrade the performance of these 
approaches. In [37], Pesaran uses a varying window size following a known structural 
break by minimizing the expected mean forecast error in an iterative procedure. Deutsch 
et al apply regime switching models to combine forecasts for the US and UK inflation 
rates in [38]. The regime the economy is in is then determined dependent on different 
functions of the lagged forecast error. A more computationally complex approach is 
followed in [39] and [40], where time varying coefficients are determined by applying a 
Kalman filter using an expanding window of observations. 

Two of the fuzzy systems mentioned in the previous section include a learning 
mechanism: The authors of [32] periodically adapt the rule bases by calculating the 
confidence of an individual forecast based on their past performance. In [31], 
membership functions are automatically generated by processing incoming data, and 
thus adapted if new data arrives.  
  



3.4 Discussion 

Although there is a vast amount of literature available on linear forecast combination, 
no straightforward method of choosing the right approach has been found. The relative 
performance of the models depends on the error variance of the individual forecasts, the 
correlation between forecast errors and the sample size for estimation ([41]). Rank-
based approaches work well for small sample sizes, while variance-covariance and 
regression methods are more suitable for bigger data sets. Similar error variances of 
individual forecasts indicate that simple averages might be a good choice.  

Compared to literature about linear forecast combination, the number of publications 
about nonlinear methods appears small. Empirical results are mostly only smaller case 
studies, only one comparative study investigating neural networks, fuzzy systems and 
neuro-fuzzy systems for forecast combination has been found in [42]. Comparing 
algorithms using four different error measures, it is concluded that each of the presented 
nonlinear methods always outperforms both of the individual forecasts. The neuro-fuzzy 
approach performs best among the three. 

Some publications about forecast combination with neural networks report a 
significant improvement over individual forecasting and linear forecast combination 
models ([43], [27]), however, in these two publications only one very short time series 
is used for evaluation. No details or justifications for the architecture of the neural 
network are given. A more extensive study finds that the performance of neural 
networks is mixed dependent on forecasting horizons or the error measure used ([28]). 
Self-organising algorithms have technical advantages compared to neural networks: 
They give an explicit model for each problem and the number of hidden layers and 
neurons does not have to be determined in advance. However, they seem to be a lesser-
known and popular method in forecast combination with only one identified publication 
using it in a very small empirical study ([33]).  

Results reported with time varying parameters are ambiguous. While Deutsch et al. 
([44]) report significant improvements of the out-of-sample forecast error on one 
specific time series, more extensive empirical studies ([39], [40]) give discouraging 
results. According to these papers, estimating parameters with a recursive Kalman Filter 
approach seems to be the least fruitful approach, requiring relatively high computational 
power and yielding only small improvements. Switching regimes seem to be more 
promising.  

Summarising, the combination of forecasts is generally considered as beneficial in 
most of the literature investigated ([18], [41]). When it comes to nonlinear forecast 
combination or combination with changing weights, the most optimistic studies are 
based on very small data sets while more extensive studies report mixed results, which 
indicates that the nonlinearity and adaptivity investigated is not beneficial for every time 
series.  

 
4 Forecast and Forecast Combination - Experiments 
A number of forecast and forecast combination algorithms have been described in the 
previous sections. Many of the empirical studies mentioned have one thing in common: 
forecasters spent a lot of time and apply a lot of knowledge in designing more or less 



sophisticated methods tuned for specific time series. In some bigger practical 
applications however, this is often not feasible, because often a great number of 
forecasts has to be calculated every second. Additionally, experts with sufficient 
knowledge to analyse a time series and choose an appropriate model for it are rare. This 
section describes an empirical experiment comparing the performance of off-the-shelf 
forecasting and forecast combination methods that have not been heavily tuned and are 
likely to be employed by users who are not forecasting experts. 
 
4.1 Methodology 

A data set consisting of eleven monthly empirical business time series with 118 to 126 
observations each has been obtained from the 2006/2007 Forecasting Competition for 
Neural Networks and Computational Intelligence NN3 ([45]). Eighty percent of the data 
is used for training the forecasting models, the remaining twenty percent for assessing 
their out-of-sample performance. For the forecast combinations, those twenty percent 
have been divided into two equal parts, of which the first one is used for calculating 
combination weights and the second one for comparing out-of sample performances. 
The comparison between forecasts and forecast combinations can thus only take place 
in the last ten percent of the data set.  
 The mean squared error (MSE) and the mean absolute percentage error (MAPE) have 
been used for assessing and comparing methods. The MSE is used as an error measure 
in the majority of empirical forecast evaluations, while the MAPE as a relative error 
measure enables comparisons between different series. 
 The following forecasting methods have been implemented in Matlab: 

1. The naïve last observation method, where the forecast is the latest observation. 
2. The moving average, where the forecast is calculated according to the formula 

(2-1). A suitable size for the time window is found by calculating moving 
averages for values from 1 to 20 and choosing the value producing the lowest in-
sample mean squared error. 

3. Single exponential smoothing using formula (2-2), where again a grid search 
between 0 and 1 is employed to find the smoothing parameter  that produces the 
best in-sample MSE. 

4. An exponential smoothing approach with dampened trend introduced by Taylor 
in [46] according to the formulas (4-1), where tL denotes the estimated level of the 
series and tR a growth rate. The smoothing parametersα and β as well as 
parameterφ are again determined by a grid search. 
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5. A polynomial regression, where a polynomial of the order four is fitted to the 
time series by regressing time series indices against time series values. 

6. The theta-model according to formula (2-4) using formulas given in [47], where 
two curves are used and eventually combined by a simple average. One curve 



originates from 0=φ , yielding a line that can be easily extrapolated; the other 
curve uses 2=φ and predicts its future values by single exponential smoothing. 

7. An ARIMA model following section 2.4. Since it is difficult to identify an 
appropriate ARIMA model automatically, a pragmatic approach was used: the 
first difference of the series has been taken to remove a certain amount of non-
stationarity before submitting it to an automatic ARMA selection process ([48]). 

8. A Feed-forward neural network, whose characteristics have been selected based 
on findings of an extensive review of work using artificial neural networks for 
forecasting purposes by Zhang et al. in [17]. According to this publication, a 
backpropagation algorithm with momentum is successfully used by the majority 
of empirical studies. One hidden layer is generally considered sufficient for 
forecasting purposes. It is suggested to use as many hidden neurons as input 
variables, with input variables being chosen with regard to the application. The 
number of lagged input variables and thus the number of hidden neurons has been 
set to 12 for the experiments here in order to capture yearly seasonal effects, if 
present. A grid search of the nine possible variations of the values 0.1, 0.5 and 0.9 
for the learning rate and the value of the momentum has been carried out, 
indicating best results with a learning rate of 0.1 and a momentum of 0.5. 

Furthermore, the following forecast combination methods have been employed: 
1. The simple average, which calculates the average of all available forecasts. 
2. Similar to the previous method, simple average with trimming averages individual 

forecasts, but only the best performing 80% of the models are taken into account. 
Performance was assessed by the MSE of the validation period. 

3. A variance-based forecast combination method using formula (3-3). 
4. The traditional outperformance method of Bunn, which was mentioned in section 

3.1. Past performance is again assessed in the validation period. 
5. A variance-based pooling approach introduced by Aiolfi and Timmermann 

([35]). Forecasts are grouped into two clusters by a k-means algorithm according 
to the mean squared error of the validation period. Forecasts of the historically 
best performing cluster are then simply averaged to obtain a final forecast. 

6. A second variance-based pooling method, which is almost identical to the 
previous one. The only difference is that three clusters are used rather than two. 

 
4.2 Results  

Table 4.1 shows average out-of-sample MSE and MAPE values for the different 
forecasting methods numbered from one to ten. MSE values are given both relative to 
the naive last observation forecast and in absolute values. It has to be noted that the 
average absolute MSE values have limited explanatory power and are only given for 
illustrative purposes, because the scale of each time series is different. The most 
obvious result is the superior performance of the neural network (method eight), 
strongly dominating average MAPE values, reducing the next best method’s MAPE by 
further 41%. Using the relative MSE measure, the neural network performs marginally 
worse than methods three, four and six. The ARMA method, which represents the most 
statistically complex method used in this test, fails to outperform any other method 
apart from the regression approach. Worth mentioning is Taylor’s modified dampened 



trend exponential smoothing (method number four), which is very easy to use and ranks 
best using the MSE and second best using the MAPE error measure.   
 

Table 4.1. MSE and MAPE error values for forecasting methods, measured on the 20% 
testing set and averaged for each of the 8 methods over the 11 series.  
 

 
Method 

MSE 
(relative to naïve 

forecast) 

MSE  
(absolute, 

x 107) 

 
MAPE 

1 1.00 2.7524 55.86 
2 0.91 2.6886 55.14 
3 0.88 2.6988 54.06 
4 0.86 2.5561 28.31 
5 98.32 27.972 3473.77 
6 0.88 2.6988 55.34 
7 1.40 2.6793 90.80 
8 0.90 1.1682 16.67 

 
Looking at the performance of forecast combination methods in table 4.2, variance-
based pooling with three clusters (method number six) is the best performing approach 
in terms of the average MAPE error measure. The MSE gives different average results: 
one big outlier for one of the time series in the data set corrupts this method’s overall 
performance, the variance-based method number three performs best instead. Simple 
average with trimming results in second best forecasts for both error measures. 
 

Table 4.2. MSE and MAPE error values for forecast combination methods, measured on 
the 10% testing set and averaged for each of the 6 methods over the 11 series.  
 

 
Method 

MSE 
(relative to naïve 

forecast) 

MSE  
(absolute, 

x 107) 

 
MAPE 

1 3.53 2.7229 57.36 
2 0.79 2.1934 23.36 
3 0.72 2.0632 26.85 
4 8.26 1.6656 21.93 
5 0.87 2.2638 24.08 
6 1.66 0.96169 16.68 

 
Table 4.3 compares forecasts to forecast combinations by showing the number of the 
best performing method according to the MSE and MAPE of the validation period 
together with the corresponding MSE and MAPE values of the testing period. Forecast 
combinations are clearly beneficial in this experiment for both error measures; for four 
out of the eleven time series they outperform individual forecast algorithms, five times 
they perform equally. In turn, they are only outperformed on two of the series. 
Regarding the MAPE error measure, the error values on the two series where the 
combinations performed worse are still quite similar, while on the other hand, 
improvements of up to 12% could be achieved from using them on other series. This 
does not hold looking at the MSE, where differences are more significant – using 



combinations results in improvements of up to 40% (series eight), but also in 
deteriorating performance of up to 72% (series one). 

 
Table 4.3. Best performing method chosen in validation period and corresponding MSE 
(relative to naïve forecast) and MAPE error measures of the testing period, left: forecasting 
methods, right: forecast combination methods. 
 
 Forecasting Forecast Combination 
Series method 

(MSE/
MAPE) 

MSE 
(rel) 

MAPE method 
(MSE/

MAPE) 

method 
(MSE/M

APE) 

MAPE 

1 8/4 0.42 2.74 5/2 1.48 2.73 
2 8/8 0.46 17.27 6/6 0.46 17.27 
3 8/8 0.33 44.31 6/6 0.33 44.31 
4 8/8 0.39 16.44 6/6 0.38 14.96 
5 8/8 2.07 3.24 6/6 2.07 3.24 
6 8/8 0.62 6.87 2/2 0.70 6.94 
7 5/5 9.31 9.65 6/6 9.31 9.65 
8 4/8 0.29 11.57 6/6 0.25 10.50 
9 7/7 0.57 4.27 6/6 0.57 4.27 

10 8/8 4.87 25.36 6/6 2.91 22.40 
11 3/8 0.90 20.34 6/1 0.82 21.95 
avg 8/8 1.13 14.13 6/6 1.66 14.06 

 
The results can be summarised as follows: When nothing is known about a time series 
and an individual forecasting method is needed, Taylor’s dampened trend exponential 
smoothing is a safe option to improve upon the naïve last observation forecast. When 
only considering a MAPE loss-function, a neural network is likely to achieve consistent 
improvements too. Combinations of forecasting methods outperformed forecasts of 
individual approaches for the majority of the series. A simple average with trimming 
performed comparatively well for both the MSE and the MAPE error measure; 
variance-based pooling proved beneficial when working with MAPE error measures. 
 
5 Conclusion and Future Work 
This paper presented and discussed forecast and forecast combination approaches with a 
focus on their application in airline industry. Building on a short introduction to airline 
revenue management, the importance and need for effective forecasting procedures in 
airline industry has been explained and justified. Two different approaches to 
forecasting demand and cancellation rates that are crucial in this context have been 
identified, one involves traditional time series forecast and forecast combination 
methods further described in sections two and three. The second approach is prediction 
using  data on passenger level, which is an area of research in airline industry 
forecasting that was made possible with the change from leg-based to O&D systems in 
the 1990s. Currently, related work only seems to have been done in the area of 
forecasting no-show rates. Testing its contributions for demand and cancellation rates is 
an interesting and novel issue.  



An empirical evaluation on a publicly available data set has been carried out, 
demonstrating the potential of forecast combinations. However, the combination of 
forecasts was not equally successful for all series and the question why some 
approaches work well on most of the series while completely failing to reasonably 
predict others remains unanswered and is an area for future research. Forecast 
combinations have also been proven to be very successful in a previous project when 
used to forecast demand for airline tickets, their usefulness to predict cancellation rates 
has yet to be investigated.  
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