
1. ABSTRACT
In this paper we investigate the potential benefits and

limitations of various data editing procedures when
constructing neuro-fuzzy classifiers based on hyperbox
fuzzy sets. There are two major aspects of data editing
which we are attempting to exploit: a) removal of outliers
and noisy data; and b) reduction of training data size. We
show that successful training data editing can result in
constructing simpler classifiers (i.e. a classifier with a
smaller number and larger hyperboxes) with better
generalisation performance. However we also indicate
the potential dangers of overediting which can lead to
dropping the whole regions of a class and constructing
too simple classifiers not able to capture the class
boundaries with high enough accuracy. A more flexible
approach than the existing data editing techniques based
on estimating probabilities used to decide whether a
point should be removed from the training set has been
proposed. An analysis and graphical interpretations are
given for the synthetic, non-trivial, 2-dimensional
classification problems.

2. INTRODUCTION
The main objective of a classifier design process is

constructing as simple a classifier as possible with as
good classification performance as possible.

The classifier design generally involves a learning
procedure which based on a finite number of training data
samples attempts to update the parameters of the
classifier in such a way as to reduce the misclassification
rate. Depending on the complexity of the classifier the
error rate for the training data set (also known as the
resubstitution error rate) can be reduced to zero.
Examples of such classifiers include the nearest
neighbour, unpruned decision trees, neural networks with
a sufficient number of hidden nodes or unpruned neuro
fuzzy classifiers to be discussed in this paper. However,
since the real world data to be classified are usually noisy
or distorted in some way due to errors in measurements,
recording problems etc. the classifier attempting to
reduce the resubstitution error rate to zero would also
model the noise and often produce the class boundaries
which are unnecessarily complex. It would also generally
perform rather badly on unseen data. The above problems

are known as the training data overfitting and the
classifier generalisation ability.

Since the ultimate goal is low generalisation error one
requires some procedures that would ensure/increase a
chance of the good generalisation performance. One of
the most common approaches to avoid overfitting is
based on cross-validation where a training set is split into
a number of disjoint sets which are then used separately
for the training and model validation\generalisation error
estimation. This process is then repeated many times in
order to obtain reliable statistics.

While for many problems the generalisation error can
be estimated through multiple cross-validation it does not
solve one basic but very important problem: Which of the
classifier models generated during the repeated training
should be chosen as a final classifier? There is also
another dilemma: How can one use as many of the
training data samples and still produce a classifier with
good generalisation performance?

Since the noisy training samples are the potential
reason for poor generalisation performance, another
approach could be to identify such data and remove them
from the training set. Such approach is investigated in
this paper through analysis of the usefulness of data
editing techniques when designing a neuro-fuzzy
classifier.

Data editing techniques have been a subject of several
studies [3,11] associated with classifiers using the k-
nearest neighbour rule. One of the commonly
acknowledged disadvantages of k-nn classifiers is that
they require the storage of a large number of samples and
that finding k-nearest neighbours for such large training
data sets can take too long to compute. However, it has
also been observed that a subset of the training set is
usually sufficient to approximate very well the decision
boundaries. What is more, in cases when training data set
contains outliers and noisy data, the use of all training
samples in the k-nn classifier design usually lead to worse
classification performance (due to overfitting) than when
only a suitable subset of the training data is used. The
data editing procedures have therefore been applied with
the aims of increasing the computational efficiency,
through reduction of the number of class prototypes, and
improving the generalisation performance through
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filtering out the outliers and noisy samples.
The general fuzzy min-max (GFMM) neural network

for classification [6-8] which will be used in this paper
belongs to a class of classification methods (similarly to
the 1-nn method) which have the capacity to learn the
training data set perfectly. In the type of the boundaries it
creates and representation of the classification regions it
is similar to decision trees [4], fuzzy rule based classifiers
where the rules are learned directly from data [1,2,10],
and other classification methods which use hyperboxes
(or hyperrectangles) as the data cluster prototypes
[12,14]. In all these methods a suitable pruning procedure
has to be used in order to avoid overfitting and achieve
good generalisation performance.

The data editing in connection with GFMM will be
used as a method of preserving as many “good” training
data samples as possible while attempting to remove
samples which would cause the overfitting. Three
different data editing approaches will be examined. The
first two will be the adaptations of the rejection of the
misclassified samples using the leave-one-out and n-fold
cross-validation error estimation approaches [3,5,11].
The third one will be based on the identification and
estimation of the importance of different data points from
the training set which are consistently used in the
generation of the classifiers during multiple n-fold cross-
validation procedure.

The remaining of this paper is organized as follows.
Section 3 will give an overview of the GFMM NN and
the agglomerative learning algorithm. In Section 4 the
description of the data editing approaches will be given.
This will be followed by experimental results. And
finally the conclusions will be presented in the last
section.

3. AN OVERVIEW OF GFMM NEURAL
NETWORK

The GFMM neural network for classification
constitutes a pattern recognition approach that is based on
hyperbox fuzzy sets. A hyperbox defines a region of the
n-dimensional pattern space, and all patterns contained
within the hyperbox have full class membership. A
hyperbox is completely defined by its min-point and its
max-point. The combination of the min-max points and
the hyperbox membership function defines a fuzzy set.
Learning in the GFMM neural network for classification
consists of creating and adjusting hyperboxes in pattern
space. For more details concerning the on-line training
algorithm please refer to [8] while the summary of the
agglomerative learning procedure will follow later in this
section. Once the network is trained the input space is
covered with hyperbox fuzzy sets. Individual hyperboxes
representing the same class are aggregated to form a
single fuzzy set class. Hyperboxes belonging to the same

class are allowed to overlap while hyperboxes belonging
to different classes are not allowed to overlap therefore
avoiding the ambiguity of an input having full
membership in more than one class. The input to the
GFMM can be itself a hyperbox (thus representing
features given in a form of upper and lower limits) and is
defined as follows:

where  and  are the lower and the upper limit

vectors for the h-th input pattern. Inputs are contained

within the n-dimensional unit cube In. When =  the

input represents a point in the pattern space.
The j-th hyperbox fuzzy set,  is defined as follows:

(1)

for all j=1,2,...,m, where  is the min

point for the j-th hyperbox,  is the

max point for the j-th hyperbox, and the membership
function for the j-th hyperbox is:

(2)

where:

 - two parameter ramp

threshold function;  - sensitivity

parameters governing how fast the membership values
decrease; and .

The membership values are used to decide whether the
presented input pattern belongs to the class associated
with the j-th hyperbox during the neural network
operation stage. 

The hyperbox membership values for each of the p
classes are aggregated using the following formula:

(3)

where U is the binary matrix with values  equal to 1

if the j-th hyperbox fuzzy set is a part of the k-th class and
0 otherwise; and , k=1..p, represent the

degrees of membership of the input pattern in the k-th
class.

Agglomerative learning
The agglomerative learning for GFMM [6] initializes

the min V and max W matrices to the values of the

training set patterns lower Al and upper Au limits
respectively. The hyperboxes are then aggregated
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sequentialy (one pair at a time) on the basis of the
maximum similarity value calculated using the following
similarity measure  between  and :

This similarity measure finds the smallest “gap” between
 and  and resulting clustering algorithm is similar to

the conventional single link algorithm [13]. Other
similarity measures defined for hyperbox fuzzy sets are
discussed in [6].

The hyperboxes with highest similarity value are only
aggregated if:
a) the aggregation does not result in an overlap with any
of the hyperboxes representing other classes;
b) newly formed hyperbox does not exceed the maximum
allowable hyperbox size; and
c) the hyperboxes  and  form a part of the same

class.
The above described process is repeated until there are

no more hyperboxes that can be aggregated.
After the training of the GFMM using the

agglomerative learning procedure the training set is
learned perfectly and in order to avoid overfitting a
hyperbox pruning procedure has to be applied. An
alternative to the standard cross-validation procedure in
form of the training data editing will now be described.

4. DATA EDITING PROCEDURES
The basic data editing procedures reported in the

literature process the training data set with the aim of
removing the data samples which contribute to the
misclassification rate.

Following [15] let us first give the general description
of the data editing procedure which can be applied with
any classifier with different error estimate procedures.

1) Make a random partition of the data set, R, into N
groups R1,...,RN.

2) Classify the samples in the set Ri, using a classifier
designed using a union of the remaining M sets
( )as the training set and tested on Ri. Repeat

M times taking different Ri each time. Let S be the set of
misclassified samples found during all M runs.

3) Remove all misclassified samples from the data set
to form a new data set, R=R-S.

4) If the last I iterations have resulted in no samples
being removed from the training data set then terminate
the algorithm, otherwise go to step 1.

Depending on the values of M and when the classifier
in point 2 of the above procedure is the k-nn rule we can
get the multiedit algorithm of Devijver and Kittler (M=1)
[3], the Wilson’s method of editing using leave-one-out
approach (M=N-1 where N in this case would be the
number of samples) [16] etc.

Procedure 1: The first of the data editing procedures
examined in this paper follows the above general
description. It is based on an application of the 1-nn, 3-nn
and 5-nn classification rules within a leave-one-out
scheme. To make it suitable for the GFMM algorithm the
membership function (2) acts as the similarity measure
utilised for finding k-nearest neighbours. Please notice
that the GFMM NN can be easily adapted for each of
these schemes. In this case the hyperboxes represent
individual training data points and the outputs of the
second layer nodes can be treated as the classification
values. The k maximum values from the second layer
outputs are used together with the above classification
rules to decide whether the input is classified correctly or
not.

The following two data editing schemes are based on
identifying either the misclassified points or the data
points which have been used for generating the GFMM
classifiers at any stage during a multiple cross-validation
process. The cross-validation used here is a two-fold
cross validation (M=1) where the training set is split into
two equally sized (as much as possible) partitions R1 and
R2 and the design of GFMM classifier is first carried out
on R1 and validated on R2 and then the process is repeated

for R2 used as a design set and R1 as a validation set. The
two-fold cross-validation has been chosen due to our
observation that the GFMM model generated strongly
depends on having large sets both for the design and
validation stages while the two sets should be as
independent (non overlapping) as possible.

Procedure 2: The second data editing procedure is a
slightly modified version of the general algorithm given
at the beginning of this section. The main difference is
that after points 1 and 2, the misclassified data are not
removed at point 3 but only marked and the random
splitting into two separate sets continues for the original
training data set. The process can be repeated a fixed
number of times (i.e. 100 times) or stopped if the last I
iterations have not resulted in new samples being marked
as misclassified. Only after the multiple cross-validation
process is completed all the marked samples are removed
and the GFMM trained for the edited training set. As it
will be illustrated in the next section, this approach,
which is similar to the multiedit algorithm, will result in
forming homogenous clusters in the input space.
However, as it has also been indicated in the literature
removing all the misclassified samples using the above
approach can sometimes result in dropping whole regions
of a class and essentially overediting the training set. In
terms of the GFMM classifier generated for such edited
data set, due to overediting, the classification models
have turned out to be too simple to accurately capture the
decision boundaries.
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Procedure 3: The third data editing procedure has been
designed using an observation that some input data
samples are more consistently used for generation of
classifiers during the cross-validation process than
others. It also applies to the misclassified samples
whereas some of the samples will be misclassified
consistently while others only occasionally. The
approach based on the rejection of all the samples which
have been misclassified at least ones during the multiple
cross-validation does not attempt to take this fact into
account in any way. In order to rectify this problem we
propose an approach which will estimate the probability
of every single point in the original training data set to be
used in the generation of the hyperboxes during the
multiple cross-validation. This probability is simply
calculated as the ratio of the number of times (Nh) an

input Ah has been used in generation of a hyperbox which
is retained in the classifier model after the validation to
the total number of repetitions (N) of the two-fold cross
validation. This can be expressed as:

(4)

Examples of the sorted probability distribution for the
training sets of the two classification problems are shown
in Fig. 3d and Fig. 4d. The small values of the
probabilities indicate which of the input data points
should be removed first when editing the training data
set. The points with P=0 should always be removed while
the points with P=1 should always be retained in the
training set. In this paper a number of different levels in
between have been tested and results reported but in the
future a suitable procedure which would optimally select
the probability value on the basis of the probability
distribution will be investigated.

5. SIMULATION RESULTS
The results of applying the above editing procedures

are illustrated on two 2-dimensional, synthetic
classification problems. Both data sets have been selected
because of the fact that they represent cases of nonlinear
classification problems with highly overlapping classes
and a number of data points which can be classified as
outliers or noisy samples. Using two dimensional
problems also offer a chance of visually examining the
effects of data editing. In addition these data sets have
been used in a number of studies with tests carried out for
a large number of different classifiers and multiple
classifier systems [9,11].

The first data set represents a normal mixtures data
which have been introduced by Ripley [11] and is shown
at Fig. 1. The training data consists of 2 classes with 125
points in each class. Each of the two classes has bimodal
distribution and the classes were chosen in such a way as

to allow the best-possible error rate of about 8%. The
training set and an independent testing set of 1000
samples drawn from the same distribution are available at
http://www.stats.ox.ac.uk/~ripley/PRNN/.

The second data set illustrated at Fig. 2 has been
introduced by Kuncheva [9]and used throughout the text
of her book to illustrate the performance of various
classification techniques. The cone-torus training data set
consists of three classes with 400 data points generated
from three differently shaped distributions: a cone, half a
torus, and a normal distribution. The prior probabilities
for the three classes are 0.25, 0.25 and 0.5. The training
data and a separate testing set consisting of further 400
samples drawn from the same distribution are available at
http://www.bangor.ac.uk/~mas00a/.

The results of testing the data editing procedures
introduced in the previous section for the above two data
sets are shown in Table 2 and Table 3. Graphical
illustrations for each of the tested editing procedures
together with the hyperboxes created on the basis of the
edited training sets are shown in Fig. 3 and Fig. 4. For
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comparison purposes the classification performance of
GFMM, when no editing has been used but only 2 fold
cross-validation procedure employed, is illustrated in
Table 1. For further comparisons of some standard
editing techniques for the normal-mixtures and cone-
torus data sets please refer to [9 section 3.3].   

As can be seen in the Table 2 and Table 3, Procedure 1
based on k-nn rule and leave-one-out method performed

well in connection with GFMM classifier resulting in a
reduction of the model complexity (i.e. generation of
smaller number of hyperboxes) while improving
generalisation performance. Examples of edited sets for
this editing procedures are shown at Fig. 3a and Fig. 4a.
Using larger k results in retaining input data forming
more homogenous clusters and favouring classes with
larger number of samples. Procedure 2 turned out to be
too strong for our purposes and in both cases resulted in
removing too many points near the boundaries of the
classes in order for GFMM to capture those boundaries
well. The examples of the edited sets and hyperboxes
created when using Procedure 2 are shown at Fig. 3b and
Fig. 4b.

The most promising results have been obtained for
Procedure 3 which is based on finding probabilities of
individual data points (please see Fig. 3d and Fig. 4d)
describing how likely a point from the original training
data set is to be used in formation of the hyperboxes
defining the final GFMM classifier

Data set

Misclassification rate for the 
training set [%]

Misclassification rate for the 
testing set [%]

Mean 
error

Standard 
deviation

Range of 
errors 
[min 
max]

Mean 
error

Standard 
deviation

Range of 
errors 

[min max]

Normal 
mixtures

13.48 1.54 [10 18.4] 9.64 1.03 [7.7 12.7]

Cone-
torus

12.54 1.69 [8 17.5] 14.78 1.57 [10.5 19.5]

Table 1: GFMM classification results based on 2 fold cross-
validation repeated 100 times (no editing).
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Figure 4: The edited training data sets and created hyperboxes for the normal mixtures data set. a) Procedure 1 for 
3-nn classifier; b) Procedure 2 for 2-fold cross validation repeated 100 times and all misclassified samples rejected; 
c) Procedure 3 for 2-fold cross validation repeated 100 times and samples with P<0.1 rejected; d) sorted probability 

distribution for all the training data samples which have been used with Procedure 3
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The results presented here are for 4 different values of
P including the two extreme cases where only the points
with P=0 are removed from the training set and only the
points with P=1 are retained in the edited training set. The
first case (points with P=0 were removed) showed signs
of overfitting while the second extreme case (points with
P<1 were removed) resulted in generating too simple
classifiers. When we chose the case in between (points
with P<0.5 were removed) the resulting classifiers
exhibited a very good generalisation performance (better
than the average case reported in Table 1) with
substantially reduced classifier complexity in
comparison to non-edited training set. For the normal-
mixtures data set when the points with P<0.1 have been
removed we have observed the classification
performance very close to the absolute optimum of 8%.
The optimal selection of Prem such that all points with

P<Prem are removed from the original training set and the

resulting GFMM classifier exhibits the best

generalisation performance will be the subject of further
investigations which could involve the analysis of the
reduction of complexity together with change of the
training data error when gradually higher Prem is selected. 

6.  CONCLUSIONS
An analysis of the usefulness and potential benefits and

limitations of various data editing procedures when
designing a GFMM classifier has been the main subject
of this study. The data editing techniques have been used
to remove some input data samples which otherwise
would result in constructing too complex classifiers with
poor generalisation ability. In this sense they can be
viewed as an alternative to the commonly used cross-
validation procedures. We have shown that some of the
well known editing techniques which remove all the
misclassified data can be too restrictive and result in
overediting the training set. We have proposed an
alternative which takes into account the fact that some
input data points are more likely to be misclassified than
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Figure 3: The edited training data sets and created hyperboxes for the cone-torus data set. a) Procedure 1 for 5-nn 
classifier; b) Procedure 2 for 2-fold cross validation repeated 100 times and all misclassified samples rejected; c) 
Procedure 3 for 2-fold cross validation repeated 100 times and samples with P<0.5 rejected; d) sorted probability 

distribution for all the training data samples which have been used with Procedure 3

a)

c) d)

b)

x1

x2

x1

x2

x1

x2

Training data points

Pr
ob

ab
ili

ty



others. By empirically estimating probabilities describing
which of the training data points are most likely to be
removed from the training set we showed that removal of
the points with the smallest probabilities can result in
constructing simpler and better performing classifiers.
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Description of the 
data editing 
procedure

No of data 
points left 
(rejected)

No of 
hyperboxe
s created

Misclassif
ication 
rate for 

the 
training 
set [%]

Misclassif
ication 
rate for 

the testing 
set [%]

Not edited train-
ing set

250 (0) 37 0 12.1

Proce-
dure 1: k-
nn with 
leave-
one-out

1-nn 213 (37) 18 8.0 10.5

3-nn 207 (43) 16 12.0 8.9

5-nn 209 (41) 11 12.4 9.0

Procedure 2: 
Rejection of all 
misclassified 
input samples

162 (88) 5 16.4 10.0

Proce-
dure 3:
Probabil-
ity guided 
rejection 
procedure

P=0 243 (7) 33 2.0 10.7

P<0.1 228 (22) 15 8.0 8.3

P<0.5 205 (45) 8 11.6 8.4

P<1 106 (144) 4 16.4 9.7

Table 2: The results of testing different data editing 
procedures for the normal mixtures data set.

Description of the 
data editing 
procedure

No of data 
points left 
(rejected)

No of 
hyperboxes 

created

Misclassif
ication 
rate for 

the 
training 
set [%]

Misclassif
ication 
rate for 

the testing 
set [%]

Not edited train-
ing set

400 (0) 55 0 15.0

Proce-
dure 1: k-
nn with 
leave-
one-out

1-nn 327 (73) 20 8.75 13.5

3-nn 330 (70) 18 10.0 13.75

5-nn 318 (82) 13 12.75 13.5

Procedure 2: 
Rejection of all 
misclassified 
input samples

289 (111) 8 17.25 17.5

Proce-
dure 3:
Probabil-
ity guided 
rejection 
procedure

P=0 397 (3) 50 0.75 14.5

P<0.1 382 (18) 36 4.25 13.75

P<0.5 349 (51) 15 9.25 13.0

P<1 216 (184) 6 18.0 16.5

Table 3: The results of testing different data editing 
procedures for the cone-torus data set.


