21 research outputs found

    3D KINEMATIC ANALYSIS OF THE FRONT HANDSPRING STEPOUT: A PILOT STUDY

    Get PDF
    This study analyzes the 3d kinematics of the front handspring stepout (FHS) performed by three female gymnasts with different levels of expertise. The purpose was to identify the crucial biomechanical components and how they govern the performance of the athletes. An optoelectronics system (with 6 infrared cameras at 100 Hz) was used to record a specific passive marker-set placed on the subjects’ bodies. We found that the most important biomechanical parameters were the horizontal components of displacement and velocity

    Exploratory investigation of impact loads during the forward handspring vault

    Get PDF
    The purpose of this study was to examine kinematic and kinetic differences in low and high intensity hand support impact loads during a forward handspring vault. A high-speed video camera (500 Hz) and two portable force platforms (500 Hz) were installed on the surface of the vault table. Two-dimensional analyses were conducted on 24 forward handspring vaults performed by 12 senior level, junior Olympic program female gymnasts (16.9 ±1.4 yr; body height 1.60 ±0.1 m; body mass 56.7 ±7.8 kg). Load intensities at impact with the vault table were classified as low (peak force 0.8 x body weight). These vaults were compared via crucial kinetic and kinematic variables using independent t-tests and Pearson correlations. Statistically significant (p < 0.001) differences were observed in peak force (t(24) = 4.75, ES = 3.37) and time to peak force (t(24) = 2.07, ES = 1.56). Statistically significant relationships between the loading rate and time to peak force were observed for high intensity loads. Peak force, time to peak force, and a shoulder angle at impact were identified as primary variables potentially involved in the determination of large repetitive loading rates on the forward handspring vault

    Comparison of bungee-aided and free-bouncing accelerations on trampoline

    Get PDF
    Trampolines remain the single best apparatus for the training of aerial acrobatics skills. Trampoline use has led to catastrophic injuries from poor landings. Passive injury prevention countermeasures such as specialized matting have been largely ineffective. Active injury countermeasures such as hand spotting, “throw-in” mats, and overhead spotting rigs provide the most effective methods. The recent addition of several bungee cords between the ropes and the gymnast’s spotting harness has resulted in altered teaching and coaching of trampoline-related acrobatics. Bungee cords have eliminated the need for a coach/spotter to manage the ropes during skill learning. The purpose of this study was to assess the influence of the addition of bungee cords with a traditional rope-based overhead spotting rig. There is a paucity of any research involving trampoline injury countermeasures. Ten experienced trampoline acrobatic athletes (5 males, 5 females) from the U.S. Ski and Snowboard Association Aerials National Team performed 10 bounces as high as they could control. A triaxial accelerometer (200 Hz) characterized 10 bungee cord aided bounces and 10 freebounces on a trampoline from each athlete. Bed contact times, peak accelerations, and average accelerations were obtained. The results supported our hypotheses that the bungeeaided bounces achieved only 40% (average) to 70% (peak) of the free-bouncing accelerations (all ρ 0.092). The bed contact time was approximately 65% longer during the bungee-aided bounces (ρ < 0.001). Bungee cords may reduce the harshness of landings on trampoline

    VERTICAL IMPACT FORCE AND LOADING RATE ON THE GYMNASTICS TABLE VAULT

    Get PDF
    The purpose of this study was to determine the effect of low and high intensity impact forces on the average loading rate during a forward handspring vault. Peak force, time to peak and impulse were used to characterize the impact vertical force during a vault performed by 12 female gymnasts. Reaction forces from right and left hands were measured at 500 Hz with two PASCO portable force platforms fixed to the vault table surface. Force data were split in two groups: Low intensity (LI: peak forces 0.7 BW). Significant differences (

    TEMPORAL, FORCE AND POSTURAL ANALYSIS OF RELEVÉ EN POINTE IN NOVICE AND INTERMEDIATE DANCERS

    Get PDF
    This study compares temporal, vertical force and postural sway variables between novice and intermediate dancers performing echappé relevé en pointe (a); to determine the influence of experience on intra-individual variability on the aforementioned performance parameters (b). Six trials performed by four novice and four intermediate dancers on a force platform were analysed. Large differences between the two groups of dancers were observed in the duration of the transition phase from the plié to the en pointe and in the length of sway path of the CoP during the en pointe phase. High loading rate was recorded when landing en pointe. Both groups of dancers showed a relatively large rate of intra-individual variability that can be seen as a task-relevant learning facilitator factor

    KINEMATICS OF THE SPRINGBOARD PHASE IN YURCHENKO-STYLE VAULTS

    Get PDF
    The object of this study is the kinematics analysis of the center of mass (COM) in the springboard phase of the Yurchenko-style vault performed by 14 female gymnasts during the 2006 Italian Championship for Clubs. The purpose was to widen the biomechanics knowledge about this phase. Temporal, horizontal and vertical spatial, horizontal and vertical velocity and body’s angle parameters were estimated. A representative kinematics analysis of the Yurchenko’s springboard phase was compiled based on these parameters. The results indicated that the gymnasts use the board to avoid a large decrease in the COM horizontal velocity and increase their COM vertical velocity. These were realizing by a great body’s angle at the board impact, reducing the amount of the downward motion in the gathering and maximizing the successive upward lift of the COM

    Assessing interest in artistic gymnastics

    Get PDF
    Despite information from world media, worldwide interest in artistic gymnastics has never been assessed. Memberships, equipment and apparel purchases, subscriptions, and other data have been used as indirect substitutes for gauging interest and participation in gymnastics. A readily available tool for assessing gymnastics interest could be of use in uncovering myriad trends. Aim of Study: This study sought to use a relatively new internet search tool called Google Trendsℱ (GT) to assess gymnastics interest by records of search terms used in Googleℱ. Methods: Googleℱ searches involve the use of search terms that are recorded and then accessible by GT. As GoogleTM searches provide access to topics of interest nearly anywhere in the world, by anyone with internet access, then using Google Trendsℱ, then GT could be used to harvest the number and types of searches involving the search-terms “men’s gymnastics” and “women’s gymnastics.” The tally of the search terms was obtained using filters such as country, region, and others. GT reports the search-term trends by calculating a relative percentage based on a sample of the largest number of specific search-term use during a particular time. Although the relative percentage approach is somewhat awkward, processing large amounts of data may be considered valuable and otherwise unattainable. Results and Conclusions: Results should be interpreted cautiously. However, the analysis revealed a litany of important trends in the worldwide interest in gymnastics

    Exploratory investigation of impact loads during the forward handspring vault

    Get PDF
    The purpose of this study was to examine kinematic and kinetic differences in low and high intensity hand support impact loads during a forward handspring vault. A high-speed video camera (500 Hz) and two portable force platforms (500 Hz) were installed on the surface of the vault table. Two-dimensional analyses were conducted on 24 forward handspring vaults performed by 12 senior level, junior Olympic program female gymnasts (16.9 ±1.4 yr; body height 1.60 ±0.1 m; body mass 56.7 ±7.8 kg). Load intensities at impact with the vault table were classified as low (peak force 0.8 x body weight). These vaults were compared via crucial kinetic and kinematic variables using independent t-tests and Pearson correlations. Statistically significant (p < 0.001) differences were observed in peak force (t(24) = 4.75, ES = 3.37) and time to peak force (t(24) = 2.07, ES = 1.56). Statistically significant relationships between the loading rate and time to peak force were observed for high intensity loads. Peak force, time to peak force, and a shoulder angle at impact were identified as primary variables potentially involved in the determination of large repetitive loading rates on the forward handspring vault

    A classification of fitness components in elite alpine skiers: a cluster analysis

    Get PDF
    The current study is an exploratory, secondary data analysis of a selection of physiological and biomechanical fitness components used to assess elite alpine skiers. The present study will provide new knowledge that can be used to aid training prescription and talent identification. A hierarchical cluster analysis was used to identify groups of variables that are crucial for elite alpine skiers and differences based on sex and competition level. The key findings of the study are the patterns that emerged in the generated dendrograms. Physiological and biomechanical fitness components are differentiated in the dendrograms of male and female world-cup-level alpine skiers, but not in non-world-cup athletes. Components related to the aerobic and anaerobic capacity tightly cluster in male athletes at world cup and non-world-cup level, and female world cup athletes. Lower body explosive force production appears to be more critical in male world cup athletes than female world cup athletes. More research is needed into the importance of isometric strength in the lower body. Future research should use larger sample sizes and consider other alpine ski demographics

    Stretching the spines of gymnasts: a review

    Get PDF
    Gymnastics is noted for involving highly specialized strength, power, agility and flexibility. Flexibility is perhaps the single greatest discriminator of gymnastics from other sports. The extreme ranges of motion achieved by gymnasts require long periods of training, often occupying more than a decade. Gymnasts also start training at an early age (particularly female gymnasts), and the effect of gymnastics training on these young athletes is poorly understood. One of the concerns of many gymnastics professionals is the training of the spine in hyperextension-the ubiquitous 'arch' seen in many gymnastics positions and movements. Training in spine hyperextension usually begins in early childhood through performance of a skill known as a back-bend. Does practising a back-bend and other hyperextension exercises harm young gymnasts? Current information on spine stretching among gymnasts indicates that, within reason, spine stretching does not appear to be an unusual threat to gymnasts' health. However, the paucity of information demands that further study be undertaken
    corecore