6 research outputs found
Jouberin localizes to collecting ducts and interacts with nephrocystin-1
Joubert syndrome and related disorders are autosomal recessive multisystem diseases characterized by cerebellar vermis aplasia/hypoplasia, retinal degeneration and cystic kidney disease. There are five known genes; mutations of which give rise to a spectrum of renal cystic diseases the most common of which is nephronophthisis, a disorder characterized by early loss of urinary concentrating ability, renal fibrosis, corticomedullary cyst formation and renal failure. Many of the proteins encoded by these genes interact with one another and are located at adherens junctions or the primary cilia and or basal bodies. Here we characterize Jouberin, a multi-domain protein encoded by the AHI1 gene. Immunohistochemistry with a novel antibody showed that endogenous Jouberin is expressed in brain, kidney and HEK293 cells. In the kidney, Jouberin co-localized with aquaporin-2 in the collecting ducts. We show that Jouberin interacts with nephrocystin-1 as determined by yeast-2-hybrid system and this was confirmed by exogenous and endogenous co-immunoprecipitation in HEK293 cells. Jouberin is expressed at cell-cell junctions, primary cilia and basal body of mIMCD3 cells while a Jouberin-GFP construct localized to centrosomes in subconfluent and dividing MDCK cells. Our results suggest that Jouberin is a protein whose expression pattern supports both the adherens junction and the ciliary hypotheses for abnormalities leading to nephronophthisis
Superoxide dismutase downregulation in osteoarthritis progression and end-stage disease
Oxidative stress is proposed as an important factor in osteoarthritis (OA). To investigate the expression of the three superoxide dismutase (SOD) antioxidant enzymes in OA. SOD expression was determined by real-time PCR and immunohistochemistry using human femoral head cartilage. SOD2 expression in Dunkin–Hartley guinea pig knee articular cartilage was determined by immunohistochemistry. The DNA methylation status of the SOD2 promoter was determined using bisulphite sequencing. RNA interference was used to determine the consequence of SOD2 depletion on the levels of reactive oxygen species (ROS) using MitoSOX and collagenases, matrix metalloproteinase 1 (MMP-1) and MMP-13, gene expression. All three SOD were abundantly expressed in human cartilage but were markedly downregulated in end-stage OA cartilage, especially SOD2. In the Dunkin–Hartley guinea pig spontaneous OA model, SOD2 expression was decreased in the medial tibial condyle cartilage before, and after, the development of OA-like lesions. The SOD2 promoter had significant DNA methylation alterations in OA cartilage. Depletion of SOD2 in chondrocytes increased ROS but decreased collagenase expression. This is the first comprehensive expression profile of all SOD genes in cartilage and, importantly, using an animal model, it has been shown that a reduction in SOD2 is associated with the earliest stages of OA. A decrease in SOD2 was found to be associated with an increase in ROS but a reduction of collagenase gene expression, demonstrating the complexities of ROS function
Authigenic carbonate mineral formation in the Pagassitikos palaeolake during the latest Pleistocene, central Greece
The Pagassitikos Gulf in Greece is a semi-enclosed bay with a maximum depth of 102 m. According to the present-day bathymetric configuration and the sea level during the latest Pleistocene, the gulf would have been isolated from the open sea, forming a palaeolake since ~32 cal. ka b.p. Sediment core B-4 was recovered from the deepest sector of the gulf and revealed evidence of a totally different depositional environment in the lowest part of the core: this contained light grey-coloured sediments, contrasting strongly with overlying olive grey muds. Multi-proxy analyses showed the predominance of carbonate minerals (aragonite, dolomite and calcite) and gypsum in the lowest part of the core. Carbonate mineral deposition can be attributed to autochthonous precipitation that took place in a saline palaeolake with high evaporation rates during the last glacial–early deglacial period; the lowest core sample to be AMS 14C dated provided an age of 19.53 cal. ka b.p. The palaeolake was presumably reconnected to the open sea at ~13.2 cal. ka b.p. during the last sea-level rise, marking the commencement of marine sedimentation characterised by the predominance of terrigenous aluminosilicates and fairly constant depositional conditions lasting up to the present day