2,629 research outputs found

    SRG/eROSITA X-ray shadowing study of giant molecular clouds

    Full text link
    SRG/eROSITA is situated in a halo orbit around L2 where the highly variable solar wind charge exchange (SWCX) emission from Earth's magnetosheath is expected to be negligible. The soft X-ray foreground emissions from the local hot bubble (LHB) and the remaining heliospheric SWCX emissions could be studied in unprecedented detail with eROSITA All-Sky Survey (eRASS) data in a 6-month cadence and better spectral resolution than ROSAT. We aim to use eRASS data of the sight lines towards three giant molecular clouds away from the Galactic plane to isolate and study the soft X-ray diffuse foreground emission. These X-ray shadows will serve as calibration baselines for the future three-dimensional structural study of the LHB. We conducted spectral analysis on the diffuse X-ray spectra of these clouds from the first four eRASSs to estimate and separate the heliospheric SWCX contribution from the LHB emission. We find the density of the LHB to be independent of the sight line with ne4×103n_e \sim 4 \times 10^{-3}\,cm3^{-3}, but not the temperature. We report a lower temperature of kTLHB=0.084±0.004kT_{\mathrm{LHB}}=0.084\pm0.004\,keV towards Chamaeleon ~II & III (Cha ~II & III) than Ophiuchus (Oph) and Corona Australis (CrA), in which we measured 0.102±0.0060.102\pm0.006 and 0.112±0.0090.112\pm0.009\,keV, respectively. We measured the emission measure of the LHB to be 2×103\sim 2\times10^{-3}\,cm6^{-6}\,pc at medium Galactic latitudes (b20|b| \sim 20^{\circ}). A monotonic increase in the SWCX contribution has been observed since the start of 2020, coincidental with the beginning of solar cycle 25. For Oph, SWCX has dominated the LHB in the 0.30.3-0.70.7\,keV band intensity since eRASS2. We observed lower SWCX contributions in Cha ~II & III and CrA, consistent with the expected decreasing solar wind ion density at high heliographic latitudes.Comment: 22 pages, 15 figures. Accepted for publication in A&

    Pvt1-encoded microRNAs in oncogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The functional significance of the <it>Pvt1 </it>locus in the oncogenesis of Burkitt's lymphoma and plasmacytomas has remained a puzzle. In these tumors, <it>Pvt1 </it>is the site of reciprocal translocations to immunoglobulin loci. Although the locus encodes a number of alternative transcripts, no protein or regulatory RNA products were found. The recent identification of non-coding microRNAs encoded within the <it>PVT1 </it>region has suggested a regulatory role for this locus.</p> <p>Results</p> <p>The mouse <it>Pvt1 </it>locus encodes several microRNAs. In mouse T cell lymphomas induced by retroviral insertions into the locus, the <it>Pvt1 </it>transcripts, and at least one of their microRNA products, mmu-miR-1204 are overexpressed. Whereas up to seven co-mutations can be found in a single tumor, in over 2,000 tumors none had insertions into both the <it>Myc </it>and <it>Pvt1 </it>loci.</p> <p>Conclusion</p> <p>Judging from the large number of integrations into the <it>Pvt1 </it>locus – more than in the nearby <it>Myc </it>locus – <it>Pvt1 </it>and the microRNAs encoded by it are as important as <it>Myc </it>in T lymphomagenesis, and, presumably, in T cell activation. An analysis of the co-mutations in the lymphomas likely place <it>Pvt1 </it>and <it>Myc </it>into the same pathway.</p

    Next generation sequencing analysis of nine Corynebacterium ulcerans isolates reveals zoonotic transmission and a novel putative diphtheria toxin-encoding pathogenicity island

    Get PDF
    Background: Toxigenic Corynebacterium ulcerans can cause a diphtheria-like illness in humans and have been found in domestic animals, which were suspected to serve as reservoirs for a zoonotic transmission. Additionally, toxigenic C. ulcerans were reported to take over the leading role in causing diphtheria in the last years in many industrialized countries. Methods: To gain deeper insights into the tox gene locus and to understand the transmission pathway in detail, we analyzed nine isolates derived from human patients and their domestic animals applying next generation sequencing and comparative genomics. Results: We provide molecular evidence for zoonotic transmission of C. ulcerans in four cases and demonstrate the superior resolution of next generation sequencing compared to multi-locus sequence typing for epidemiologic research. Additionally, we provide evidence that the virulence of C. ulcerans can change rapidly by acquisition of novel virulence genes. This mechanism is exemplified by an isolate which acquired a prophage not present in the corresponding isolate from the domestic animal. This prophage contains a putative novel virulence factor, which shares high identity with the RhuM virulence factor from Salmonella enterica but which is unknown in Corynebacteria so far. Furthermore, we identified a putative pathogenicity island for C. ulcerans bearing a diphtheria toxin gene. Conclusion: The novel putative diphtheria toxin pathogenicity island could provide a new and alternative pathway for Corynebacteria to acquire a functional diphtheria toxin-encoding gene by horizontal gene transfer, distinct from the previously well characterized phage infection model. The novel transmission pathway might explain the unexpectedly high number of toxigenic C. ulcerans

    Stromal Expression of Heat-Shock Protein 27 Is Associated with Worse Clinical Outcome in Patients with Colorectal Cancer Lung Metastases

    Get PDF
    Pulmonary metastases are common in patients with primary colorectal cancer (CRC). Heat- shock protein 27 (Hsp27) is upregulated in activated fibroblasts during wound healing and systemically elevated in various diseases. Cancer-associated fibroblasts (CAFs) are also thought to play a role as prognostic and predictive markers in various malignancies includ- ing CRC. Surprisingly, the expression of Hsp27 has never been assessed in CAFs. There- fore we aimed to investigate the expression level of Hsp27 in CAFs and its clinical implications in patients with CRC lung metastases

    CROCODILE \\ Incorporating medium-resolution spectroscopy of close-in directly imaged exoplanets into atmospheric retrievals via cross-correlation

    Full text link
    The investigation of the atmospheres of closely separated, directly imaged gas giant exoplanets is challenging due to the presence of stellar speckles that pollute their spectrum. To remedy this, the analysis of medium- to high-resolution spectroscopic data via cross-correlation with spectral templates (cross-correlation spectroscopy) is emerging as a leading technique. We aim to define a robust Bayesian framework combining, for the first time, three widespread direct-imaging techniques, namely photometry, low-resolution spectroscopy, and medium-resolution cross-correlation spectroscopy in order to derive the atmospheric properties of close-in directly imaged exoplanets. Our framework CROCODILE (cross-correlation retrievals of directly imaged self-luminous exoplanets) naturally combines the three techniques by adopting adequate likelihood functions. To validate our routine, we simulated observations of gas giants similar to the well-studied β\beta~Pictoris~b planet and we explored the parameter space of their atmospheres to search for potential biases. We obtain more accurate measurements of atmospheric properties when combining photometry, low- and medium-resolution spectroscopy into atmospheric retrievals than when using the techniques separately as is usually done in the literature. We find that medium-resolution (R4000R \approx 4000) K-band cross-correlation spectroscopy alone is not suitable to constrain the atmospheric properties of our synthetic datasets; however, this problem disappears when simultaneously fitting photometry and low-resolution (R60R \approx 60) spectroscopy between the Y and M bands. Our framework allows the atmospheric characterisation of directly imaged exoplanets using the high-quality spectral data that will be provided by the new generation of instruments such as VLT/ERIS, JWST/MIRI, and ELT/METIS

    Sphingolipid Activator Proteins Are Required for Epidermal Permeability Barrier Formation

    Get PDF
    The epidermal permeability barrier is maintained by extracellular lipid membranes within the interstices of the stratum corneum. Ceramides, the major components of these multilayered membranes, derive in large part from hydrolysis of glucosylceramides mediated by stratum corneum beta-glucocerebrosidase (beta-GlcCerase). Prosaposin (pSAP) is a large precursor protein that is proteolytically cleaved to form four distinct sphingolipid activator proteins, which stimulate enzymatic hydrolysis of sphingolipids, including glucosylceramide. Recently, pSAP has been eliminated in a mouse model using targeted deletion and homologous recombination. In addition to the extracutaneous findings noted previously, our present data indicate that pSAP deficiency in the epidermis has significant consequences including: 1) an accumulation of epidermal glucosylceramides together with below normal levels of ceramides; 2) alterations in lipids that are bound by ester linkages to proteins of the cornified cell envelope; 3) a thickened stratum lucidum with evidence of scaling; and 4) a striking abnormality in lamellar membrane maturation within the interstices of the stratum corneum. Together, these results demonstrate that the production of pSAP, and presumably mature sphingolipid activator protein generation, is required for normal epidermal barrier formation and function. Moreover, detection of significant amounts of covalently bound omega-OH-GlcCer in pSAP-deficient epidermis suggests that deglucosylation to omega-OH-Cer is not a requisite step prior to covalent attachment of lipid to cornified envelope proteins

    Strengthening of Reinforced Concrete Beams with Externally Mounted Sequentially Activated Iron-Based Shape Memory Alloys

    Get PDF
    Iron based shape memory alloys (Fe-SMA) have recently been used as active flexural strengthening material for reinforced concrete (RC) beams. Fe-SMAs are characterized by a shape memory effect (SME) which allows the recovery of previously induced plastic deformations through heating. If these deformations are restrained a recovery stress is generated by the SME. This recovery stress can be used to prestress a SMA applied as a strengthening material. This paper investigates the performance and the load deformation behavior of RC beams strengthened with mechanical end anchored unbonded Fe-SMA strips activated by sequentially infrared heating. The performance of a single loop loaded and a double loop loaded SMA strengthened RC beam are compared to an un-strengthened beam and a reference beam strengthened with commercially available structural steel. In these tests the SMA strengthened beam had the highest cracking load and the highest ultimate load. It is shown that the serviceability behavior of a concrete beam can be improved by a second thermal activation. The sequential heating procedure causes different temperature and stress states during activation along the SMA strip that have not been researched previously. The possible effect of this different temperature and stress states on metal lattice phase transformation is modeled and discussed. Moreover the role of the martensitic transformation during the cooling process on leveling the inhomogeneity of phase state in the overheated section is pointed out

    Temperature influence on DXA measurements: bone mineral density acquisition in frozen and thawed human femora

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Determining bone mineral density (BMD) with dual-energy x-ray absorptiometry (DXA) is an established and widely used method that is also applied prior to biomechanical testing. However, DXA is affected by a number of factors. In order to delay decompositional processes, human specimens for biomechanical studies are usually stored at about -20°C; similarly, bone mineral density measurements are usually performed in the frozen state. The aim of our study was to investigate the influence of bone temperature on the measured bone mineral density.</p> <p>Methods</p> <p>Using DXA, bone mineral density measurements were taken in 19 fresh-frozen human femora, in the frozen and the thawed state. Water was used to mimic the missing soft tissue around the specimens. Measurements were taken with the specimens in standardized internal rotation. Total-BMD and single-BMD values of different regions of interest were used for evaluation.</p> <p>Results</p> <p>Fourteen of the 19 specimens showed a decrease in BMD after thawing. The measured total-BMD of the frozen specimens was significantly (1.4%) higher than the measured BMD of the thawed specimens.</p> <p>Conclusion</p> <p>Based on our findings we recommend that the measurement of bone density, for example prior to biomechanical testing, should be standardized to thawed or frozen specimens. Temperature should not be changed during measurements. When using score systems for data interpretation (e.g. T- or Z-score), BMD measurements should be performed only on thawed specimens.</p

    Dark sectors 2016 Workshop: community report

    Get PDF
    This report, based on the Dark Sectors workshop at SLAC in April 2016, summarizes the scientific importance of searches for dark sector dark matter and forces at masses beneath the weak-scale, the status of this broad international field, the important milestones motivating future exploration, and promising experimental opportunities to reach these milestones over the next 5-10 years
    corecore