38 research outputs found

    Tumour growth in mice resistant to diet-induced obesity

    Get PDF
    Obesity is a chronic disease with associated increases in the incidence, and a reduction in survival, of many cancer types. Obesity results from an imbalance in calorie intake and calorie requirement. This study aimed to investigate the separate effects of high-fat diet and obesity on cancer in an animal model resistant to diet-induced obesity. Male BALB/c mice fed long-term on a high-fat, Western-style diet were implanted with syngeneic CT26 colon adenocarcinoma cells and compared to mice fed normal diet. BALB/c mice on high-fat diet were 10% heavier than mice fed normal diet, with no difference in tumour growth rates or tumour cell proliferation. Subgroups of mice that became obese on high-fat diet, however, showed increased tumour growth rates compared to mice fed normal diet, whereas mice that remained slim showed no difference in tumour growth. Protein arrays identified several adipokines that were expressed at different levels, including serum Tissue Inhibitors of Metallo-Proteinases (TIMP-1) and tumour C-Reactive Protein (CRP). In conclusion, tumour growth was enhanced in mice unable to resist obesity, and adipokine profiles were affected by the animals’ ability to resist obesity

    The Association Between Ascorbate and the Hypoxia-Inducible Factors in Human Renal Cell Carcinoma Requires a Functional Von Hippel-Lindau Protein

    Get PDF
    Hypoxia-inducible transcription factors (HIFs) drive angiogenesis and cancer cell growth, contributing to an aggressive tumor phenotype. HIF-α protein levels and activity are controlled at the post-translational level by HIF hydroxylases. Hydroxylated HIF-α is recognized by the von Hippel Lindau (VHL) tumor suppressor and targeted for degradation. The HIF hydroxylases are members of the iron and 2-oxoglutarate-dependent dioxygenases, which require ascorbate as cofactor for activity. Clear cell renal cell carcinomas (ccRCC) harbor mutations in the VHL gene, whereas papillary RCC (pRCC) have a functional VHL. These natural occurring VHL variants in RCC enable the testing, in clinical samples, of the hypothesis that ascorbate modulates HIF-α levels through its role as a cofactor for the HIF hydroxylases. We measured ascorbate, HIF-1α, and HIF-2α protein and HIF downstream targets BNIP3, CA9, cyclin D1, GLUT1, and VEGF (combined to generate the HIF pathway score) in VHL-defective ccRCC (n = 73) and VHL-proficient pRCC human tumor tissue (n = 41). HIF and ascorbate levels were increased in ccRCC and pRCC tumors compared to matched renal cortex. HIF-1 and total HIF pathway activation scores were decreased with higher ascorbate in pRCC tumors (Spearman r = −0.38, p < 0.05 and r = −0.35, p < 0.05). This was not evident for ccRCC tumors. In mechanistic studies in vitro, ascorbate influenced HIF-1 activity in VHL-proficient, but not VHL-defective ccRCC cells. Our results indicate that ccRCC, which lacks a functional VHL, does not respond to ascorbate-mediated modulation of the HIF response. This contrasts with the demonstrated association between ascorbate content and the HIF pathway observed in pRCC and other tumors with a functional VHL. The results support a role for ascorbate as a modulator of HIF activity and tumor aggression in cancer types with a functional hypoxic response

    Restoring tumour selectivity of the bioreductive prodrug pr-104 by developing an analogue resistant to aerobic metabolism by human aldo-keto reductase 1c3

    Get PDF
    PR-104 is a phosphate ester pre-prodrug that is converted in vivo to its cognate alcohol, PR-104A, a latent alkylator which forms potent cytotoxins upon bioreduction. Hypoxia selectivity results from one-electron nitro reduction of PR-104A, in which cytochrome P450 oxidoreductase (POR) plays an important role. However, PR-104A also undergoes ‘off-target’ two-electron reduction by human aldo-keto reductase 1C3 (AKR1C3), resulting in activation in oxygenated tissues. AKR1C3 expression in human myeloid progenitor cells probably accounts for the dose-limiting myelotoxicity of PR-104 documented in clinical trials, resulting in human PR-104A plasma exposure levels 3.4- to 9.6-fold lower than can be achieved in murine models. Structure-based design to eliminate AKR1C3 activation thus represents a strategy for restoring the therapeutic window of this class of agent in humans. Here, we identified SN29176, a PR-104A analogue resistant to human AKR1C3 activation. SN29176 retains hypoxia selectivity in vitro with aerobic/hypoxic IC(50) ratios of 9 to 145, remains a substrate for POR and triggers γH2AX induction and cell cycle arrest in a comparable manner to PR-104A. SN35141, the soluble phosphate pre-prodrug of SN29176, exhibited superior hypoxic tumour log cell kill (>4.0) to PR-104 (2.5–3.7) in vivo at doses predicted to be achievable in humans. Orthologues of human AKR1C3 from mouse, rat and dog were incapable of reducing PR-104A, thus identifying an underlying cause for the discrepancy in PR-104 tolerance in pre-clinical models versus humans. In contrast, the macaque AKR1C3 gene orthologue was able to metabolise PR-104A, indicating that this species may be suitable for evaluating the toxicokinetics of PR-104 analogues for clinical development. We confirmed that SN29176 was not a substrate for AKR1C3 orthologues across all four pre-clinical species, demonstrating that this prodrug analogue class is suitable for further development. Based on these findings, a prodrug candidate was subsequently identified for clinical trials

    Ascorbate content of clinical glioma tissues is related to tumour grade and to global levels of 5-hydroxymethyl cytosine.

    Full text link
    peer reviewedGliomas are incurable brain cancers with poor prognosis, with epigenetic dysregulation being a distinctive feature. 5-hydroxymethylcytosine (5-hmC), an intermediate generated in the demethylation of 5-methylcytosine, is present at reduced levels in glioma tissue compared with normal brain, and that higher levels of 5-hmC are associated with improved patient survival. DNA demethylation is enzymatically driven by the ten-eleven translocation (TET) dioxygenases that require ascorbate as an essential cofactor. There is limited data on ascorbate in gliomas and the relationship between ascorbate and 5-hmC in gliomas has never been reported. Clinical glioma samples (11 low-grade, 26 high-grade) were analysed for ascorbate, global DNA methylation and hydroxymethylation, and methylation status of the O-6-methylguanine-DNA methyltransferase (MGMT) promoter. Low-grade gliomas contained significantly higher levels of ascorbate than high-grade gliomas (p = 0.026). Levels of 5-hmC were significantly higher in low-grade than high-grade glioma (p = 0.0013). There was a strong association between higher ascorbate and higher 5-hmC (p = 0.004). Gliomas with unmethylated and methylated MGMT promoters had similar ascorbate levels (p = 0.96). One mechanism by which epigenetic modifications could occur is through ascorbate-mediated optimisation of TET activity in gliomas. These findings open the door to clinical intervention trials in patients with glioma to provide both mechanistic information and potential avenues for adjuvant ascorbate therapy

    Direct visualization of electroporation-assisted in vivo gene delivery to tumors using intravital microscopy – spatial and time dependent distribution

    Get PDF
    BACKGROUND: Electroporation is currently receiving much attention as a way to increase drug and DNA delivery. Recent studies demonstrated the feasibility of electrogene therapy using a range of therapeutic genes for the treatment of experimental tumors. However, the transfection efficiency of electroporation-assisted DNA delivery is still low compared to viral methods and there is a clear need to optimize this approach. In order to optimize treatment, knowledge about spatial and time dependency of gene expression following delivery is of utmost importance in order to improve gene delivery. Intravital microscopy of tumors growing in dorsal skin fold window chambers is a useful method for monitoring gene transfection, since it allows non-invasive dynamic monitoring of gene expression in tumors in a live animal. METHODS: Intravital microscopy was used to monitor real time spatial distribution of the green fluorescent protein (GFP) and time dependence of transfection efficiency in syngeneic P22 rat tumor model. DNA alone, liposome-DNA complexes and electroporation-assisted DNA delivery using two different sets of electric pulse parameters were compared. RESULTS: Electroporation-assisted DNA delivery using 8 pulses, 600 V/cm, 5 ms, 1 Hz was superior to other methods and resulted in 22% increase in fluorescence intensity in the tumors up to 6 days post-transfection, compared to the non-transfected area in granulation tissue. Functional GFP was detected within 5 h after transfection. Cells expressing GFP were detected throughout the tumor, but not in the surrounding tissue that was not exposed to electric pulses. CONCLUSIONS: Intravital microscopy was demonstrated to be a suitable method for monitoring time and spatial distribution of gene expression in experimental tumors and provided evidence that electroporation-assisted gene delivery using 8 pulses, 600 V/cm, 5 ms, 1 Hz is an effective method, resulting in early onset and homogenous distribution of gene expression in the syngeneic P22 rat tumor model

    Tumour cells expressing single VEGF isoforms display distinct growth, survival and migration characteristics

    Get PDF
    Vascular endothelial growth factor-A (VEGF) is produced by most cancer cells as multiple isoforms, which display distinct biological activities. VEGF plays an undisputed role in tumour growth, vascularisation and metastasis; nevertheless the functions of individual isoforms in these processes remain poorly understood. We investigated the effects of three main murine isoforms (VEGF188, 164 and 120) on tumour cell behaviour, using a panel of fibrosarcoma cells we developed that express them individually under endogenous promoter control. Fibrosarcomas expressing only VEGF188 (fs188) or wild type controls (fswt) were typically mesenchymal, formed ruffles and displayed strong matrix-binding activity. VEGF164- and VEGF120-producing cells (fs164 and fs120 respectively) were less typically mesenchymal, lacked ruffles but formed abundant cell-cell contacts. On 3D collagen, fs188 cells remained mesenchymal while fs164 and fs120 cells adopted rounded/amoeboid and a mix of rounded and elongated morphologies respectively. Consistent with their mesenchymal characteristics, fs188 cells migrated significantly faster than fs164 or fs120 cells on 2D surfaces while contractility inhibitors accelerated fs164 and fs120 cell migration. VEGF164/VEGF120 expression correlated with faster proliferation rates and lower levels of spontaneous apoptosis than VEGF188 expression. Nevertheless, VEGF188 was associated with constitutively active/phosphorylated AKT, ERK1/2 and Stat3 proteins. Differences in proliferation rates and apoptosis could be explained by defective signalling downstream of pAKT to FOXO and GSK3 in fs188 and fswt cells, which also correlated with p27/p21 cyclin-dependent kinase inhibitor over-expression. All cells expressed tyrosine kinase VEGF receptors, but these were not active/activatable suggesting that inherent differences between the cell lines are governed by endogenous VEGF isoform expression through complex interactions that are independent of tyrosine kinase receptor activation. VEGF isoforms are emerging as potential biomarkers for anti-VEGF therapies. Our results reveal novel roles of individual isoforms associated with cancer growth and metastasis and highlight the importance of understanding their diverse actions

    Vitamin C Transporters in Cancer: Current Understanding and Gaps in Knowledge

    No full text
    Sufficient uptake and whole body distribution of vitamin C (ascorbate) is essential for many biochemical processes, including some that are vital for tumor growth and spread. Uptake of ascorbate into cancer cells is modulated by availability, tumor blood flow, tissue diffusion parameters, and ascorbate transport proteins. Uptake into cells is mediated by two families of transport proteins, namely, the solute carrier gene family 23, consisting of sodium-dependent vitamin C transporters (SVCTs) 1 and 2, and the SLC2 family of glucose transporters (GLUTs). GLUTs transport the oxidized form of the vitamin, dehydroascorbate (DHA), which is present at negligible to low physiological levels. SVCT1 and 2 are capable of accumulating ascorbate against a concentration gradient from micromolar concentrations outside to millimolar levels inside of cells. Investigating the expression and regulation of SVCTs in cancer has only recently started to be included in studies focused on the role of ascorbate in tumor formation, progression, and response to therapy. This review gives an overview of the current, limited knowledge of ascorbate transport across membranes, as well as tissue distribution, gene expression, and the relevance of SVCTs in cancer. As tumor ascorbate accumulation may play a role in the anticancer activity of high dose ascorbate treatment, further research into ascorbate transport in cancer tissue is vital

    Ascorbate Uptake and Retention by Breast Cancer Cell Lines and the Intracellular Distribution of Sodium-Dependent Vitamin C Transporter 2

    No full text
    Ascorbate plays a vital role as a co-factor for a superfamily of enzymes, the 2-oxoglutarate dependent dioxygenases (2-OGDDs), which govern numerous pathways in cancer progression, including the hypoxic response and the epigenetic regulation of gene transcription. Ascorbate uptake into most cells is through active transport by the sodium-dependent vitamin C transporter 2 (SVCT2). The aims of this study were to determine the kinetics of ascorbate uptake and retention by breast cancer cell lines under various oxygen conditions, and to investigate the role of SVCT2 in mediating ascorbate uptake and intracellular trafficking. Human MDA-MB231 cells accumulated up to 5.1 nmol ascorbate/106 cells, human MCF7 cells 4.5 nmol/106 cells, and murine EO771 cells 26.7 nmol/106 cells. Intracellular ascorbate concentrations decreased rapidly after reaching maximum levels unless further ascorbate was supplied to the medium, and there was no difference in the rate of ascorbate loss under normoxia or hypoxia. SVCT2 was localised mainly to subcellular compartments, with the nucleus apparently containing the most SVCT2 protein, followed by the mitochondria. Much less SVCT2 staining was observed on the plasma membrane. Our data showed that careful management of the doses and incubation times with ascorbate in vitro allows for an approximation of in vivo conditions. The localisation of SVCT2 suggests that the distribution of ascorbate to intracellular compartments is closely aligned to the known function of ascorbate in supporting 2-OGDD enzymatic functions in the organelles and with supporting antioxidant protection in the mitochondria

    Gulonolactone Addition to Human Hepatocellular Carcinoma Cells with Gene Transfer of Gulonolactone Oxidase Restores Ascorbate Biosynthesis and Reduces Hypoxia Inducible Factor 1

    No full text
    Humans are unable to synthesise ascorbate (Vitamin C) due to the lack of a functional gulonolactone oxidase (Gulo), the enzyme that catalyses the final step in the biosynthesis pathway. Ascorbate is a vital micronutrient required for many biological functions, including as a cofactor for metalloenzymes that regulate the transcription factor hypoxia-inducible factor-1 (HIF-1), which governs cell survival under hypoxia. In most animals, ascorbate is made in liver cells. This study aimed to restore ascorbate synthesis to human hepatocellular carcinoma HepG2 cells and determine the effect of internally produced ascorbate on HIF-1 activation. HepG2 cells were gene-modified with a plasmid encoding the mouse Gulo cDNA, tested for genomic incorporation by PCR and ascorbate synthesis by high performance liquid chromatography. Levels of HIF-1 protein were measured using Western blotting. Gulo-modified HepG2 cells showed increased adherence compared to control HepG2 cells. A PCR-positive clone synthesised ascorbate when the Gulo substrate, l-gulono-1,4-lactone, was supplied. Intracellular ascorbate concentrations reached 5% of saturation levels (6 nmol/106 cells). Addition of ascorbate or gulonolactone reduced HIF-1 accumulation in the Gulo clone, but also in parental HepG2 cells. Our data confirm the requirement for a number of factors in addition to Gulo in the ascorbate biosynthesis pathway in human cells
    corecore