1,143 research outputs found
Field-induced local moments around nonmagnetic impurities in metallic cuprates
We consider a defect in a strongly correlated host metal and discuss, within
a slave boson mean field formalism for the model, the formation of an
induced paramagnetic moment which is extended over nearby sites. We study in
particular an impurity in a metallic band, suitable for modelling the optimally
doped cuprates, in a regime where the impurity moment is paramagnetic. The form
of the local susceptibility as a function of temperature and doping is found to
agree well with recent NMR experiments, without including screening processes
leading to the Kondo effect.Comment: 7 pages, submitted to Phys Rev
Normal State Magnetic Properties of Ni and Zn Substituted in YBa_{2}Cu_{3} O_{6+x}: Hole-Doping Dependence
We present SQUID susceptibility data on Zn and Ni substituted
YBa_{2}Cu_{3}O_{6+x}. Cross-checks with NMR yield an unprecedented accuracy in
the estimate of the magnetic susceptibility associated with the substituants,
from the underdoped to the lightly overdoped case. This allows us to determine
the Weiss temperature \theta for YBCO: its value is very small for all hole
dopings n_h. Since in conventional metals, the Kondo temperature,
, magnetic screening effects would not be expected for ; in contrast, increasing n_h produces a reduction of the small moment
induced by Zn^{2+} and a nearly constant effective moment for Ni^{2+}
corresponding to a spin 1/2 rather than to a spin 1.Comment: 4 pages, 5 figures, to be published in Europhysics Letter
Curriculum and Instructional Methods for Drug Information, Literature Evaluation, and Biostatistics: Survey of U.S. Pharmacy Schools
BACKGROUND: The drug information curriculum in US colleges of pharmacy continues to evolve. The American College of Clinical Pharmacy (ACCP) Drug Information Practice and Research Network (DI PRN) published an opinion paper with specific recommendations regarding drug information education in 2009. Adoption of these recommendations has not been evaluated. OBJECTIVE: To assess which recommendations made in the ACCP DI PRN opinion paper are included in US pharmacy school curricula and characterize faculty qualifications, educational methods, and recent changes in drug information education. METHODS: An electronic survey was designed using the ACCP DI PRN opinion paper and the Accreditation Council for Pharmacy Education standards and guidelines for accreditation of PharmD programs in the US. Survey questions addressed curricular content within the following categories: drug information, literature evaluation, and biostatistics. A letter including the online survey link was sent via email to the dean of each US college/school of pharmacy (N = 128). Recipients were instructed to forward the email to the individual at their institution who was the most knowledgeable about the content and methodology used for didactic drug information education. RESULTS: Sixty-four responses were included in the final analysis. Of the 19 ACCP DI PRN minimum core concepts, 9 (47%) were included in curricula of all responding institutions; 14 of 19 (74%) were included in curricula for all but 1 institution. In contrast, 5 of 16 concepts (31%) were not formally taught by a number of institutions. Many respondents noted an increased focus on evidence-based medicine, medication safety, and informatics. CONCLUSIONS: Although a survey of drug information curricula documented substantial inclusion of the essential concepts presented in the ACCP DI PRN opinion paper, room for improvement remains in drug information curricula in US colleges of pharmacy
Helium condensation in aerogel: avalanches and disorder-induced phase transition
We present a detailed numerical study of the elementary condensation events
(avalanches) associated to the adsorption of He in silica aerogels. We use
a coarse-grained lattice-gas description and determine the nonequilibrium
behavior of the adsorbed gas within a local mean-field analysis, neglecting
thermal fluctuations and activated processes. We investigate the statistical
properties of the avalanches, such as their number, size and shape along the
adsorption isotherms as a function of gel porosity, temperature, and chemical
potential. Our calculations predict the existence of a line of critical points
in the temperature-porosity diagram where the avalanche size distribution
displays a power-law behavior and the adsorption isotherms have a universal
scaling form. The estimated critical exponents seem compatible with those of
the field-driven Random Field Ising Model at zero temperature.Comment: 16 pages, 14 figure
Spitz and wingless, emanating from distinct borders, cooperate to establish cell fate across the engrailed domain in the drosophila epidermis
A key step in development is the establishment of cell type diversity across a cellular field. Segmental patterning within the Drosophila embryonic epidermis is one paradigm for this process. At each parasegment boundary, cells expressing the Wnt family member Wingless confront cells expressing the homeoprotein Engrailed. The Engrailed-expressing cells normally differentiate as one of two alternative cell types. In investigating the generation of this cell type diversity among the 2-cell-wide Engrailed stripe, we previously showed that Wingless, expressed just anterior to the Engrailed cells, is essential for the specification of anterior Engrailed cell fate. In a screen for additional mutations affecting Engrailed cell fate, we identified anterior open/yan, a gene encoding an inhibitory ETS-domain transcription factor that is negatively regulated by the Rasl-MAP kinase signaling cascade. We find that Anterior Open must be inactivated for posterior Engrailed cells to adopt their correct fate. This is achieved by the EGF receptor (DER), which is required autonomously in the Engrailed cells to trigger the Ras1-MAP kinase pathway. Localized activation of DER is accomplished by restricted processing of the activating ligand, Spitz. Processing is confined to the cell row posterior to the Engrailed domain by the restricted expression of Rhomboid. These cells also express the inhibitory ligand Argos, which attenuates the activation of DER in cell rows more distant from the ligand source. Thus, distinct signals flank each border of the Engrailed domain, as Wingless is produced anteriorly and Spitz posteriorly. Since we also show that En cells have the capacity to respond to either Wingless or Spitz, these cells must choose their fate depending on the relative level of activation of the two pathways.Louise OâKeefe, Scott T. Dougan, Limor Gabay, Erez Raz, Ben-Zion Shilo and Stephen DiNard
A temperature-controlled device for volumetric measurements of Helium adsorption in porous media
We describe a set-up for studying adsorption of helium in silica aerogels,
where the adsorbed amount is easily and precisely controlled by varying the
temperature of a gas reservoir between 80 K and 180 K. We present validation
experiments and a first application to aerogels. This device is well adapted to
study hysteresis, relaxation, and metastable states in the adsorption and
desorption of fluids in porous media
Phase transitions in the one-dimensional frustrated quantum XY model and Josephson-junction ladders
A one-dimensional quantum version of the frustrated XY (planar rotor) model
is considered which can be physically realized as a ladder of
Josephson-junctions at half a flux quantum per plaquette. This system undergoes
a superconductor to insulator transition at zero temperature as a function of
charging energy. The critical behavior is studied using a Monte Carlo transfer
matrix applied to the path-integral representation of the model and a
finite-size-scaling analysis of data on small system sizes. Depending on the
ratio between the interchain and intrachain couplings the system can have
single or double transitions which is consistent with the prediction that its
critical behavior should be described by the two-dimensional classical XY-Ising
model.Comment: 13 pages, Revtex, J. Appl. Phys. (to appear), Inpe-las-00
Trapping of Metal Atoms and Metal Clusters by Chabazite under Severe Redox Stress
[EN] The remarkable ability of Al-containing CHA zeolite to trap and stabilize noble single-metal atoms and metal clusters has facilitated the design of sinter-resistant materials for catalytic applications that require severe reaction conditions. At high temperatures in O-2, volatile MOx species appear to be fixated by the zeolite Al centers to prevent Ostwald-ripening sintering mechanisms, whereas small metal clusters (<100 atoms) are stabilized in H-2 without further aggregation as coalescence by Brownian motion is inhibited because of an encapsulation effect. Evidences of the possibility to trap the metal released from a second adjacent surface (e.g., SiO2 and Al2O3), upon metal migration over micrometer distances, are provided. These properties have opened the possibility to prepare several noble-metal atoms and clusters inside small-pore zeolites, including bimetallic formulation, by simple wetness impregnations or solid-to-solid transformations followed by standard calcination procedures, resulting in improved catalytic performances compared to other nonreducible supports in reactions that subject the catalysts to severe redox stress, such as the water-gas-shift reaction.This work has been supported by the Spanish Government-MINECO through "Severo Ochoa" (SEV 2012-0267) and MAT2015-71261-R, by the European Union through ERC-AdG-2014-671093 (SynCatMatch) and by the Fundacion Ramon Areces through a research contract of the "Life and Materials Science" program. The Electron Microscopy Service of the UPV is acknowledged for their help in sample characterization. This research used beamline 9-BM and 20-ID of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. We thank Isabel Millet, Elisa Garcia, and Paul Stevens for technical assistance, and Aaron Sattler, Randall Meyer, Rob Carr, and Gary Casty for review of the manuscript and interesting scientific discussions. We appreciate the support of ExxonMobil Research and Engineering in this fundamental research area.Moliner Marin, M.; Gabay, JE.; Kliewer, CE.; Serna Merino, PM.; Corma CanĂłs, A. (2018). Trapping of Metal Atoms and Metal Clusters by Chabazite under Severe Redox Stress. ACS Catalysis. 8(10):9520-9528. https://doi.org/10.1021/acscatal.8b01717S9520952881
Doing Biopolitics Differently? Radical Potential in the Post-2015 MDG and SDG Debates
Post print On institutional repository or subject-based repository after a 18 months embargo, withdraw
- âŠ