87,059 research outputs found

    Modulation of voltage-dependent sodium and potassium currents by charged amphiphiles in cardiac ventricular myocytes. Effects via modification of surface potential.

    Get PDF
    Modulation of voltage-dependent sodium and potassium currents by charged amphiphiles was investigated in cardiac ventricular myocytes using the patch-clamp technique. Negatively charged sodium dodecylsulfate (SDS) increased amplitude of INa, whereas positively charged dodecyltrimethylammonium (DDTMA) decreased INa. Furthermore, SDS shifted the steady-state activation and inactivation of INa in the negative direction, whereas DDTMA shifted the curves in the opposite direction. These shifts provided an explanation for the changes in current amplitude. Activation and inactivation kinetics of INa were accelerated by SDS but slowed by DDTMA. These changes in both steady-state gating and kinetics of INa are consistent with a decrease of the intramembrane field by SDS and an increase of the field by DDTMA due to an alteration of surface potential after their insertion into the outer monolayer of the sarcolemma. The effect of SDS on the steady-state inactivation of INa was concentration dependent and partially reversed by screening surface charges with increased extracellular [Ca2+]. These amphiphiles also altered the activation of the delayed rectifier K+ current (IK,del), producing a shift in the negative direction by SDS but in the positive direction by DDTMA. These results suggest that the insertion of charged amphiphiles into the cell membrane alters the behavior of voltage-dependent INa and IK,del by changing the surface charge density, and consequently the surface potential and implies, although indirectly, that the lipid surface charges are important to the voltage-dependent gating of these channels

    A Twin Spiral Planar Antenna for UWB Medical Radars

    Get PDF
    A planar-spiral antenna to be used in an ultrawideband (UWB) radar system for heart activity monitoring is presented. The antenna, named “twin,” is constituted by two spiral dipoles in a compact structure. The reflection coefficient at the feed point of the dipoles is lower than −8 dB over the 3–12 GHz band, while the two-dipoles coupling is about −20 dB. The radiated beam is perpendicular to the plane of the spiral, so the antenna is wearable and it may be an optimal radiator for a medical UWB radar for heart rate detection. The designed antenna has been also used to check some hypotheses about the UWB radar heart activity detection mechanism. The radiation impedance variation, caused by the thorax vibrations associated with heart activity, seems to be the most likely explanation of the UWB radar operation

    A critical comparison of approaches to resource name management within the IEC common information model

    Get PDF
    Copyright @ 2012 IEEEElectricity network resources are frequently identified within different power systems by inhomogeneous names and identities due to the legacy of their administration by different utility business domains. The IEC 61970 Common Information Model (CIM) enables network modeling to reflect the reality of multiple names for unique network resources. However this issue presents a serious challenge to the integrity of a shared CIM repository that has the task of maintaining a resource manifest, linking network resources to master identities, when unique network resources may have multiple names and identities derived from different power system models and other power system applications. The current approach, using CIM 15, is to manage multiple resource names within a singular CIM namespace utilizing the CIM “IdentifiedObject” and “Name” classes. We compare this approach to one using additional namespaces relating to different power systems, similar to the practice used in CIM extensions, in order to more clearly identify the genealogy of a network resource, provide faster model import times and a simpler means of supporting the relationship between multiple resource names and identities and a master resource identity.This study is supported by the UK National Grid and Brunel University

    Conformal symmetry transformations and nonlinear Maxwell equations

    Full text link
    We make use of the conformal compactification of Minkowski spacetime M#M^{\#} to explore a way of describing general, nonlinear Maxwell fields with conformal symmetry. We distinguish the inverse Minkowski spacetime [M#]1[M^{\#}]^{-1} obtained via conformal inversion, so as to discuss a doubled compactified spacetime on which Maxwell fields may be defined. Identifying M#M^{\#} with the projective light cone in (4+2)(4+2)-dimensional spacetime, we write two independent conformal-invariant functionals of the 66-dimensional Maxwellian field strength tensors -- one bilinear, the other trilinear in the field strengths -- which are to enter general nonlinear constitutive equations. We also make some remarks regarding the dimensional reduction procedure as we consider its generalization from linear to general nonlinear theories.Comment: 12 pages, Based on a talk by the first author at the International Conference in Mathematics in honor of Prof. M. Norbert Hounkonnou (October 29-30, 2016, Cotonou, Benin). To be published in the Proceedings, Springer 201

    MicroRNA-383 located in frequently deleted chromosomal locus 8p22 regulates CD44 in prostate cancer.

    Get PDF
    A major genomic alteration in prostate cancer (PCa) is frequent loss of chromosome (chr) 8p with a common region of loss of heterozygosity (LOH) at chr8p22 locus. Genomic studies implicate this locus in the initiation of clinically significant PCa and with progression to metastatic disease. However, the genes within this region have not been fully characterized to date. Here we demonstrate for the first time that a microRNA component of this region-miR-383-is frequently downregulated in prostate cancer, has a critical role in determining tumor-initiating potential and is involved in prostate cancer metastasis via direct regulation of CD44, a ubiquitous marker of PCa tumor-initiating cells (TICs)/stem cells. Expression analyses of miR-383 in PCa clinical tissues established that low miR-383 expression is associated with poor prognosis. Functional data suggest that miR-383 regulates PCa tumor-initiating/stem-like cells via CD44 regulation. Ectopic expression of miR-383 inhibited tumor-initiating capacity of CD44+ PCa cells. Also, 'anti-metastatic' effects of ectopic miR-383 expression were observed in a PCa experimental metastasis model. In view of our results, we propose that frequent loss of miR-383 at chr8p22 region leads to tumor initiation and prostate cancer metastasis. Thus, we have identified a novel finding that associates a long observed genomic alteration to PCa stemness and metastasis. Our data suggest that restoration of miR-383 expression may be an effective therapeutic modality against PCa. Importantly, we identified miR-383 as a novel PCa tissue diagnostic biomarker with a potential that outperforms that of serum PSA

    Contribution of Matrix Metalloproteinase-9 to Cerebral Edema and Functional Outcome following Experimental Subarachnoid Hemorrhage

    Get PDF
    Background: Cerebral edema is an important risk factor for death and poor outcome following subarachnoid hemorrhage (SAH). However, underlying mechanisms are still poorly understood. Matrix metalloproteinase (MMP)-9 is held responsible for the degradation of microvascular basal lamina proteins leading to blood-brain barrier dysfunction and, thus, formation of vasogenic cerebral edema. The current study was conducted to clarify the role of MMP-9 for the development of cerebral edema and for functional outcome after SAH. Methods: SAH was induced in FVB/N wild-type (WT) or MMP-9 knockout (MMP-9(-/-)) mice by endovascular puncture. Intracranial pressure (ICP), regional cerebral blood flow (rCBF), and mean arterial blood pressure (MABP) were continuously monitored up to 30 min after SAH. Mortality was quantified for 7 days after SAH. In an additional series neurological function and body weight were assessed for 3 days after SAH. Subsequently, ICP and brain water content were quantified. Results: Acute ICP, rCBF, and MABP did not differ between WT and MMP-9(-/-) mice, while 7 days' mortality was lower in MMP-9(-/-) mice (p = 0.03; 20 vs. 60%). MMP-9(-/-) mice also exhibited better neurological recovery, less brain edema formation, and lower chronic ICP. Conclusions: The results of the current study suggest that MMP-9 contributes to the development of early brain damage after SAH by promoting cerebral edema formation. Hence, MMP-9 may represent a novel molecular target for the treatment of SAH. Copyright (C) 2011 S. Karger AG, Base

    Reciprocal Recommender System for Learners in Massive Open Online Courses (MOOCs)

    Get PDF
    Massive open online courses (MOOC) describe platforms where users with completely different backgrounds subscribe to various courses on offer. MOOC forums and discussion boards offer learners a medium to communicate with each other and maximize their learning outcomes. However, oftentimes learners are hesitant to approach each other for different reasons (being shy, don't know the right match, etc.). In this paper, we propose a reciprocal recommender system which matches learners who are mutually interested in, and likely to communicate with each other based on their profile attributes like age, location, gender, qualification, interests, etc. We test our algorithm on data sampled using the publicly available MITx-Harvardx dataset and demonstrate that both attribute importance and reciprocity play an important role in forming the final recommendation list of learners. Our approach provides promising results for such a system to be implemented within an actual MOOC.Comment: 10 pages, accepted as full paper @ ICWL 201

    Is the even distribution of insecticide-treated cattle essential for tsetse control? Modelling the impact of baits in heterogeneous environments

    Get PDF
    Background: Eliminating Rhodesian sleeping sickness, the zoonotic form of Human African Trypanosomiasis, can be achieved only through interventions against the vectors, species of tsetse (Glossina). The use of insecticide-treated cattle is the most cost-effective method of controlling tsetse but its impact might be compromised by the patchy distribution of livestock. A deterministic simulation model was used to analyse the effects of spatial heterogeneities in habitat and baits (insecticide-treated cattle and targets) on the distribution and abundance of tsetse. Methodology/Principal Findings: The simulated area comprised an operational block extending 32 km from an area of good habitat from which tsetse might invade. Within the operational block, habitat comprised good areas mixed with poor ones where survival probabilities and population densities were lower. In good habitat, the natural daily mortalities of adults averaged 6.14% for males and 3.07% for females; the population grew 8.46in a year following a 90% reduction in densities of adults and pupae, but expired when the population density of males was reduced to <0.1/km2; daily movement of adults averaged 249 m for males and 367 m for females. Baits were placed throughout the operational area, or patchily to simulate uneven distributions of cattle and targets. Gaps of 2–3 km between baits were inconsequential provided the average imposed mortality per km2 across the entire operational area was maintained. Leaving gaps 5–7 km wide inside an area where baits killed 10% per day delayed effective control by 4–11 years. Corrective measures that put a few baits within the gaps were more effective than deploying extra baits on the edges. Conclusions/Significance: The uneven distribution of cattle within settled areas is unlikely to compromise the impact of insecticide-treated cattle on tsetse. However, where areas of >3 km wide are cattle-free then insecticide-treated targets should be deployed to compensate for the lack of cattle

    Development and application of two novel monoclonal antibodies against overexpressed CD26 and integrin α3 in human pancreatic cancer.

    Get PDF
    Monoclonal antibody (mAb) technology is an excellent tool for the discovery of overexpressed cell surface tumour antigens and the development of targeting agents. Here, we report the development of two novel mAbs against CFPAC-1 human pancreatic cancer cells. Using ELISA, flow cytometry, immunoprecipitation, mass spectrometry, Western blot and immunohistochemistry, we found that the target antigens recognised by the two novel mAbs KU44.22B and KU44.13A, are integrin α3 and CD26 respectively, with high levels of expression in human pancreatic and other cancer cell lines and human pancreatic cancer tissue microarrays. Treatment with naked anti-CD26 mAb KU44.13A did not have any effect on the growth and migration of cancer cells nor did it induce receptor downregulation. In contrast, treatment with anti-integrin α3 mAb KU44.22B inhibited growth in vitro of Capan-2 cells, increased migration of BxPC-3 and CFPAC-1 cells and induced antibody internalisation. Both novel mAbs are capable of detecting their target antigens by immunohistochemistry but not by Western blot. These antibodies are excellent tools for studying the role of integrin α3 and CD26 in the complex biology of pancreatic cancer, their prognostic and predictive values and the therapeutic potential of their humanised and/or conjugated versions in patients whose tumours overexpress integrin α3 or CD26
    corecore