27 research outputs found

    Lipids in benthic diatoms: A new suitable screening procedure

    No full text
    The selection of suitable and indigenous microalgae species is a fundamental requirement in developing added-value bioactive compounds recoverable in the food, health, and cosmetics markets. In this work, an integrated screening approach was developed to characterize the lipid rate of 33 diatom species (including 15 species studied for the first time) belonging to 16 genera from the Nantes Culture Collection, with the main objective of discovering bioactive lipid producers. For that purpose, a simple reliable method for establishing growth kinetics of strains and semi-quantitative analysis of lipid rates was developed. Growth kinetics measurements were achieved by daily minimal measurement fluorescence (F0) whereas lipid rate analyses were performed by high-throughput Fourier Transform Infrared spectroscopy on entire cells and lipid extracts. Results indicated that the method could be used directly on entire cells in spite of the presence of silica for the FTIR approach (due to frustule). The total lipid rate was species-dependant and ranged from 3.7% to 30.5% DW. Six strains out of 33 were found to present a higher total lipid rate superior to 15% DW, and 11 showed medium lipid rates ranging from 10% to 15% DW. The results revealed that five diatom species i.e. Amphora sp. NCC169, Nitzschia sp. NCC109, Nitzschia alexandrina NCC33, Opephora sp. NCC366 and Staurosira sp. NCC182 presented interesting growth capabilities and should be further investigated as potential sources for their original lipid rate

    Effects of light and nitrogen availability on photosynthetic efficiency and fatty acid content of three original benthic diatom strains

    No full text
    Microalgal biotechnology has gained considerable importance in recent decades. Applications range from simple biomass production for food and animal feed to valuable products for fuel, pharmaceuticals, health, biomolecules and materials relevant to nanotechnology. There are few reports of the exploration of wider microalgae biodiversity in the literature on high value microalgal compounds, however, because it is believed that there is little to be gained in terms of biomass productivity by examining new strains. Still, without diversity, innovation in biotechnology applications is currently limited. Using microalgal diversity is a very promising way to match species and processes for a specific biotechnological application. In this context, three benthic marine diatom strains (Entomoneis paludosa NCC18.2, Nitzschia alexandrina NCC33, and Staurosira sp NCC182) were selected for their lipid production and growth capacities. Using PAM fluorometry and FTIR spectroscopy, this study investigated the impact of nitrogen repletion and depletion as well as light intensity (30, 100, and 400 ÎŒmol.photons.m-2.s-1) on their growth, photosynthetic performance and macromolecular content, with the aim of improving the quality of their lipid composition. Results suggest that under high light and nitrogen limitation, the photosynthetic machinery is negatively impacted, leading cells to reduce their growth and accumulate lipids and/or carbohydrates. However, increasing lipid content under stressful conditions does not increase the production of lipids of interest: PUFA, ARA and EPA production decreases. Culture conditions to optimize production of such fatty acids in these three original strains led to a balance between economic and ecophysiological constraints: low light and no nitrogen limitation led to better photosynthetic capacities associated with energy savings, and hence a more profitable approach

    Lipid Composition, Fatty Acids and Sterols in the Seaweeds Ulva armoricana, and Solieria chordalis from Brittany (France): An Analysis from Nutritional, Chemotaxonomic, and Antiproliferative Activity Perspectives

    Get PDF
    Lipids from the proliferative macroalgae Ulva armoricana (Chlorophyta) and Solieria chordalis (Rhodophyta) from Brittany, France, were investigated. The total content of lipids was 2.6% and 3.0% dry weight for U. armoricana and S. chordalis, respectively. The main fractions of S. chordalis were neutral lipids (37%) and glycolipids (38%), whereas U. armoricana contained mostly neutral lipids (55%). Polyunsaturated fatty acids (PUFA) represented 29% and 15% of the total lipids in U. armoricana and S. chordalis, respectively. In both studied algae, the phospholipids were composed of PUFA for 18%. In addition, PUFA were shown to represent 9% and 4.5% of glycolipids in U. armoricana and S. chordalis, respectively. The essential PUFA were 16:4n-3, 18:4n-3, 18:2n-3, 18:2n-6, and 22:6n-3 in U. armoricana, and 20:4n-6 and 20:5n-3 in S. chordalis. It is important to notice that six 2-hydroxy-, three 3-hydroxy-, and two monounsaturated hydroxy fatty acids were also identified and may provide a chemotaxonomic basis for algae. These seaweeds contained interesting compounds such as squalene, α-tocopherol, cholest-4-en-3-one and phytosterols. The antiproliferative effect was evaluated in vitro on human non-small-cell bronchopulmonary carcinoma line (NSCLC-N6) with an IC50 of 23 Όg/mL for monogalactosyldiacylglycerols isolated from S. chordalis and 24 Όg/mL for digalactosyldiacylglycerols from U. armoricana. These results confirm the potentialities of valorization of these two species in the fields of health, nutrition and chemotaxonomy

    Seasonal composition of lipids, fatty acids, and sterols in the edible red alga Grateloupia turuturu

    No full text
    International audienceComposition of lipids, sterols, fatty acids (FA), and phospholipids in the edible Rhodophyta Grateloupia turuturu from Britanny, France, was investigated over four seasons in order to identify compounds with potential benefits in health and nutrition. The lipid content was found to vary from 3.3 to 4.1 % dry weight. No marked variations were observed for glycolipids accounting for 42.3-46.8 %, whereas neutral lipids and phospholipids fluctuated from 20.1 % (summer) to 41.8 % (winter), and 11.2 % (winter) to 33.4 % (summer), respectively. Polyunsaturated FA of the total lipids were found from 20.4 % (winter) to 31.1 % (summer), including 20:5 omega 3 acid as the major one (up to 16.3 % in summer). Phosphatidylcholine (20.0-43.7 %) and phosphatidylserine (24.6-37.5 %) were the dominant phospholipids in all seasons. Compounds of interest were identified in minor amounts such as squalene, alpha-tocopherol, phytonadione (vitamin K-1), cholesteryl formate, cholest-4-en-3-one, and cholesta-4,6-dien-3-one. Cholesterol was the major sterol with a lower content in spring and summer
    corecore