32 research outputs found

    Effects of Anti-VEGF on Predicted Antibody Biodistribution: Roles of Vascular Volume, Interstitial Volume, and Blood Flow

    Get PDF
    BACKGROUND: The identification of clinically meaningful and predictive models of disposition kinetics for cancer therapeutics is an ongoing pursuit in drug development. In particular, the growing interest in preclinical evaluation of anti-angiogenic agents alone or in combination with other drugs requires a complete understanding of the associated physiological consequences. METHODOLOGY/PRINCIPAL FINDINGS: Technescan™ PYP™, a clinically utilized radiopharmaceutical, was used to measure tissue vascular volumes in beige nude mice that were naïve or administered a single intravenous bolus dose of a murine anti-vascular endothelial growth factor (anti-VEGF) antibody (10 mg/kg) 24 h prior to assay. Anti-VEGF had no significant effect (p>0.05) on the fractional vascular volumes of any tissues studied; these findings were further supported by single photon emission computed tomographic imaging. In addition, apart from a borderline significant increase (p = 0.048) in mean hepatic blood flow, no significant anti-VEGF-induced differences were observed (p>0.05) in two additional physiological parameters, interstitial fluid volume and the organ blood flow rate, measured using indium-111-pentetate and rubidium-86 chloride, respectively. Areas under the concentration-time curves generated by a physiologically-based pharmacokinetic model changed substantially (>25%) in several tissues when model parameters describing compartmental volumes and blood flow rates were switched from literature to our experimentally derived values. However, negligible changes in predicted tissue exposure were observed when comparing simulations based on parameters measured in naïve versus anti-VEGF-administered mice. CONCLUSIONS/SIGNIFICANCE: These observations may foster an enhanced understanding of anti-VEGF effects in murine tissues and, in particular, may be useful in modeling antibody uptake alone or in combination with anti-VEGF

    Reliability of dynamic contrast-enhanced magnetic resonance imaging data in primary brain tumours: a comparison of Tofts and shutter speed models

    Get PDF
    Purpose To investigate the robustness of pharmacokinetic modelling of DCE-MRI brain tumour data and to ascertain reliable perfusion parameters through a model selection process and a stability test. Methods DCE-MRI data of 14 patients with primary brain tumours were analysed using the Tofts model (TM), the extended Tofts model (ETM), the shutter speed model (SSM) and the extended shutter speed model (ESSM). A no-effect model (NEM) was implemented to assess overfitting of data by the other models. For each lesion, the Akaike Information Criteria (AIC) was used to build a 3D model selection map. The variability of each pharmacokinetic parameter extracted from this map was assessed with a noise propagation procedure, resulting in voxel-wise distributions of the coefficient of variation (CV). Results The model selection map over all patients showed NEM had the best fit in 35.5% of voxels, followed by ETM (32%), TM (28.2%), SSM (4.3%) and ESSM (<0.1%). In analysing the reliability of Ktrans, when considering regions with a CV<20%, ≈25% of voxels were found to be stable across all patients. The remaining 75% of voxels were considered unreliable. Conclusions The majority of studies quantifying DCE-MRI data in brain tumours only consider a single model and whole-tumour statistics for the output parameters. Appropriate model selection, considering tissue biology and its effects on blood brain barrier permeability and exchange conditions, together with an analysis on the reliability and stability of the calculated parameters, is critical in processing robust brain tumour DCE-MRI data

    Quantitative Analysis and Comparison Study of [18F]AlF-NOTA-PRGD2, [18F]FPPRGD2 and [68Ga]Ga-NOTA-PRGD2 Using a Reference Tissue Model

    Get PDF
    With favorable pharmacokinetics and binding affinity for αvβ3 integrin, 18F-labeled dimeric cyclic RGD peptide ([18F]FPPRGD2) has been intensively used as a PET imaging probe for lesion detection and therapy response monitoring. A recently introduced kit formulation method, which uses an 18F-fluoride-aluminum complex labeled RGD tracer ([18F]AlF-NOTA-PRGD2), provides a strategy for simplifying the labeling procedure to facilitate clinical translation. Meanwhile, an easy-to-prepare 68Ga-labeled NOTA-PRGD2 has also been reported to have promising properties for imaging integrin αvβ3. The purpose of this study is to quantitatively compare the pharmacokinetic parameters of [18F]FPPRGD2, [18F]AlF-NOTA-PRGD2, and [68Ga]Ga-NOTA-PRGD2. U87MG tumor-bearing mice underwent 60-min dynamic PET scans following the injection of three tracers. Kinetic parameters were calculated using Logan graphical analysis with reference tissue. Parametric maps were generated using voxel-level modeling. All three compounds showed high binding potential (BpND = k3/k4) in tumor voxels. [18F]AlF-NOTA-PRGD2 showed comparable BpND value (3.75±0.65) with those of [18F]FPPRGD2 (3.39±0.84) and [68Ga]Ga-NOTA-PRGD2 (3.09±0.21) (p>0.05). Little difference was found in volume of distribution (VT) among these three RGD tracers in tumor, liver and muscle. Parametric maps showed similar kinetic parameters for all three tracers. We also demonstrated that the impact of non-specific binding could be eliminated in the kinetic analysis. Consequently, kinetic parameter estimation showed more comparable results among groups than static image analysis. In conclusion, [18F]AlF-NOTA-PRGD2 and [68Ga]Ga-NOTA-PRGD2 have comparable pharmacokinetics and quantitative parameters compared to those of [18F]FPPRGD2. Despite the apparent difference in tumor uptake (%ID/g determined from static images) and clearance pattern, the actual specific binding component extrapolated from kinetic modeling appears to be comparable for all three dimeric RGD tracers

    A Systems Approach for Tumor Pharmacokinetics

    Get PDF
    Recent advances in genome inspired target discovery, small molecule screens, development of biological and nanotechnology have led to the introduction of a myriad of new differently sized agents into the clinic. The differences in small and large molecule delivery are becoming increasingly important in combination therapies as well as the use of drugs that modify the physiology of tumors such as anti-angiogenic treatment. The complexity of targeting has led to the development of mathematical models to facilitate understanding, but unfortunately, these studies are often only applicable to a particular molecule, making pharmacokinetic comparisons difficult. Here we develop and describe a framework for categorizing primary pharmacokinetics of drugs in tumors. For modeling purposes, we define drugs not by their mechanism of action but rather their rate-limiting step of delivery. Our simulations account for variations in perfusion, vascularization, interstitial transport, and non-linear local binding and metabolism. Based on a comparison of the fundamental rates determining uptake, drugs were classified into four categories depending on whether uptake is limited by blood flow, extravasation, interstitial diffusion, or local binding and metabolism. Simulations comparing small molecule versus macromolecular drugs show a sharp difference in distribution, which has implications for multi-drug therapies. The tissue-level distribution differs widely in tumors for small molecules versus macromolecular biologic drugs, and this should be considered in the design of agents and treatments. An example using antibodies in mouse xenografts illustrates the different in vivo behavior. This type of transport analysis can be used to aid in model development, experimental data analysis, and imaging and therapeutic agent design.National Institutes of Health (U.S.) (grant T32 CA079443

    Antiangiogenic agents in the treatment of recurrent or newly diagnosed glioblastoma: Analysis of single-agent and combined modality approaches

    Get PDF
    Surgical resection followed by radiotherapy and temozolomide in newly diagnosed glioblastoma can prolong survival, but it is not curative. For patients with disease progression after frontline therapy, there is no standard of care, although further surgery, chemotherapy, and radiotherapy may be used. Antiangiogenic therapies may be appropriate for treating glioblastomas because angiogenesis is critical to tumor growth. In a large, noncomparative phase II trial, bevacizumab was evaluated alone and with irinotecan in patients with recurrent glioblastoma; combination treatment was associated with an estimated 6-month progression-free survival (PFS) rate of 50.3%, a median overall survival of 8.9 months, and a response rate of 37.8%. Single-agent bevacizumab also exceeded the predetermined threshold of activity for salvage chemotherapy (6-month PFS rate, 15%), achieving a 6-month PFS rate of 42.6% (p < 0.0001). On the basis of these results and those from another phase II trial, the US Food and Drug Administration granted accelerated approval of single-agent bevacizumab for the treatment of glioblastoma that has progressed following prior therapy. Potential antiangiogenic agents-such as cilengitide and XL184-also show evidence of single-agent activity in recurrent glioblastoma. Moreover, the use of antiangiogenic agents with radiation at disease progression may improve the therapeutic ratio of single-modality approaches. Overall, these agents appear to be well tolerated, with adverse event profiles similar to those reported in studies of other solid tumors. Further research is needed to determine the role of antiangiogenic therapy in frontline treatment and to identify the optimal schedule and partnering agents for use in combination therapy
    corecore