5 research outputs found

    Indoor Social Networks in a South African Township: Potential Contribution of Location to Tuberculosis Transmission

    Get PDF
    CITATION: Wood, R. et al. 2012. Indoor social networks in a South African township : potential contribution of location to tuberculosis transmission. PLoS ONE, 7(6): e39246, doi:10.1371/journal.pone.0039246.The original publication is available at http://journals.plos.org/plosoneBackground We hypothesized that in South Africa, with a generalized tuberculosis (TB) epidemic, TB infection is predominantly acquired indoors and transmission potential is determined by the number and duration of social contacts made in locations that are conducive to TB transmission. We therefore quantified time spent and contacts met in indoor locations and public transport by residents of a South African township with a very high TB burden. Methods A diary-based community social mixing survey was performed in 2010. Randomly selected participants (n = 571) prospectively recorded numbers of contacts and time spent in specified locations over 24-hour periods. To better characterize age-related social networks, participants were stratified into ten 5-year age strata and locations were classified into 11 types. Results Five location types (own-household, other-households, transport, crèche/school, and work) contributed 97.2% of total indoor time and 80.4% of total indoor contacts. Median time spent indoors was 19.1 hours/day (IQR:14.3–22.7), which was consistent across age strata. Median daily contacts increased from 16 (IQR:9–40) in 0–4 year-olds to 40 (IQR:18–60) in 15–19 year-olds and declined to 18 (IQR:10–41) in ≥45 year-olds. Mean daily own-household contacts was 8.8 (95%CI:8.2–9.4), which decreased with increasing age. Mean crèche/school contacts increased from 6.2/day (95%CI:2.7–9.7) in 0–4 year-olds to 28.1/day (95%CI:8.1–48.1) in 15–19 year-olds. Mean transport contacts increased from 4.9/day (95%CI:1.6–8.2) in 0–4 year-olds to 25.5/day (95%CI:12.1–38.9) in 25–29 year-olds. Conclusions A limited number of location types contributed the majority of indoor social contacts in this community. Increasing numbers of social contacts occurred throughout childhood, adolescence, and young adulthood, predominantly in school and public transport. This rapid increase in non-home socialization parallels the increasing TB infection rates during childhood and young adulthood reported in this community. Further studies of the environmental conditions in schools and public transport, as potentially important locations for ongoing TB infection, are indicated.http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0039246Publisher's versio

    Evidence for waning of latency in a cohort study of tuberculosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To investigate how the risk of active tuberculosis disease is influenced by time since original infection and to determine whether the risk of reactivation of tuberculosis increases or decreases with age.</p> <p>Methods</p> <p>Cohort analysis of data for the separate ten year birth cohorts of 1876-1885 to 1959-1968 obtained from Statistics Norway and the National Tuberculosis Registry. These data were used to calculate the rates and the changes in the rates of bacillary (or active) tuberculosis. Data on bacillary tuberculosis for adult (20+) age groups were obtained from the National Tuberculosis Registry and Statistics Norway from 1946 to 1974. Most cases during this period arose due to reactivation of remote infection. Participants in this part of the analysis were all reported active tuberculosis cases in Norway from 1946 to 1974 as recorded in the National Tuberculosis Registry.</p> <p>Results</p> <p>Tuberculosis decreased at a relatively steady rate when following individual birth cohorts, but with a tendency of slower decline as time passed since infection. A mean estimate of this rate of decline was 57% in a 10 year period.</p> <p>Conclusions</p> <p>The risk of reactivation of latent tuberculosis decreases with age. This decline may reflect the rate at which latent tuberculosis is eliminated from a population with minimal transmission of tubercle bacilli. A model for risk of developing active tuberculosis as a function of time since infection shows that the rate at which tuberculosis can be eliminated from a society can be quite substantial if new infections are effectively prevented. The findings clearly indicate that preventative measures against transmission of tuberculosis will be the most effective. These results also suggest that the total population harbouring live tubercle bacilli and consequently the future projection for increased incidence of tuberculosis in the world is probably overestimated.</p

    New approaches in the diagnosis and treatment of latent tuberculosis infection

    Get PDF
    With nearly 9 million new active disease cases and 2 million deaths occurring worldwide every year, tuberculosis continues to remain a major public health problem. Exposure to Mycobacterium tuberculosis leads to active disease in only ~10% people. An effective immune response in remaining individuals stops M. tuberculosis multiplication. However, the pathogen is completely eradicated in ~10% people while others only succeed in containment of infection as some bacilli escape killing and remain in non-replicating (dormant) state (latent tuberculosis infection) in old lesions. The dormant bacilli can resuscitate and cause active disease if a disruption of immune response occurs. Nearly one-third of world population is latently infected with M. tuberculosis and 5%-10% of infected individuals will develop active disease during their life time. However, the risk of developing active disease is greatly increased (5%-15% every year and ~50% over lifetime) by human immunodeficiency virus-coinfection. While active transmission is a significant contributor of active disease cases in high tuberculosis burden countries, most active disease cases in low tuberculosis incidence countries arise from this pool of latently infected individuals. A positive tuberculin skin test or a more recent and specific interferon-gamma release assay in a person without overt signs of active disease indicates latent tuberculosis infection. Two commercial interferon-gamma release assays, QFT-G-IT and T-SPOT.TB have been developed. The standard treatment for latent tuberculosis infection is daily therapy with isoniazid for nine months. Other options include therapy with rifampicin for 4 months or isoniazid + rifampicin for 3 months or rifampicin + pyrazinamide for 2 months or isoniazid + rifapentine for 3 months. Identification of latently infected individuals and their treatment has lowered tuberculosis incidence in rich, advanced countries. Similar approaches also hold great promise for other countries with low-intermediate rates of tuberculosis incidence
    corecore