67 research outputs found
Analysis and characterization of heparin impurities
This review discusses recent developments in analytical methods available for the sensitive separation, detection and structural characterization of heparin contaminants. The adulteration of raw heparin with oversulfated chondroitin sulfate (OSCS) in 2007â2008 spawned a global crisis resulting in extensive revisions to the pharmacopeia monographs on heparin and prompting the FDA to recommend the development of additional physicochemical methods for the analysis of heparin purity. The analytical chemistry community quickly responded to this challenge, developing a wide variety of innovative approaches, several of which are reported in this special issue. This review provides an overview of methods of heparin isolation and digestion, discusses known heparin contaminants, including OSCS, and summarizes recent publications on heparin impurity analysis using sensors, near-IR, Raman, and NMR spectroscopy, as well as electrophoretic and chromatographic separations
Protection from ultraviolet damage and photocarcinogenesis by vitamin d compounds
Š Springer Nature Switzerland AG 2020. Exposure of skin cells to UV radiation results in DNA damage, which if inadequately repaired, may cause mutations. UV-induced DNA damage and reactive oxygen and nitrogen species also cause local and systemic suppression of the adaptive immune system. Together, these changes underpin the development of skin tumours. The hormone derived from vitamin D, calcitriol (1,25-dihydroxyvitamin D3) and other related compounds, working via the vitamin D receptor and at least in part through endoplasmic reticulum protein 57 (ERp57), reduce cyclobutane pyrimidine dimers and oxidative DNA damage in keratinocytes and other skin cell types after UV. Calcitriol and related compounds enhance DNA repair in keratinocytes, in part through decreased reactive oxygen species, increased p53 expression and/or activation, increased repair proteins and increased energy availability in the cell when calcitriol is present after UV exposure. There is mitochondrial damage in keratinocytes after UV. In the presence of calcitriol, but not vehicle, glycolysis is increased after UV, along with increased energy-conserving autophagy and changes consistent with enhanced mitophagy. Reduced DNA damage and reduced ROS/RNS should help reduce UV-induced immune suppression. Reduced UV immune suppression is observed after topical treatment with calcitriol and related compounds in hairless mice. These protective effects of calcitriol and related compounds presumably contribute to the observed reduction in skin tumour formation in mice after chronic exposure to UV followed by topical post-irradiation treatment with calcitriol and some, though not all, related compounds
CNV-association meta-analysis in 191,161 European adults reveals new loci associated with anthropometric traits
There are few examples of robust associations between rare copy number variants (CNVs) and complex continuous human traits. Here we present a large-scale CNV association meta-analysis on anthropometric traits in up to 191,161 adult samples from 26 cohorts. The study reveals five CNV associations at 1q21.1, 3q29, 7q11.23, 11p14.2, and 18q21.32 and confirms two known loci at 16p11.2 and 22q11.21, implicating at least one anthropometric trait. The discovered CNVs are recurrent and rare (0.01-0.2%), with large effects on height (> 2.4 cm), weight ( 5 kg), and body mass index (BMI) (> 3.5 kg/m(2)). Burden analysis shows a 0.41 cm decrease in height, a 0.003 increase in waist-to-hip ratio and increase in BMI by 0.14 kg/m2 for each Mb of total deletion burden (P = 2.5 x 10(-10), 6.0 x 10(-5), and 2.9 x 10(-3)). Our study provides evidence that the same genes (e.g., MC4R, FIBIN, and FMO5) harbor both common and rare variants affecting body size and that anthropometric traits share genetic loci with developmental and psychiatric disorders
Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits
Few genome-wide association studies (GWAS) account for environmental exposures, like smoking, potentially impacting the overall trait variance when investigating the genetic contribution to obesity-related traits. Here, we use GWAS data from 51,080 current smokers and 190,178 nonsmokers (87% European descent) to identify loci influencing BMI and central adiposity, measured as waist circumference and waist-to-hip ratio both adjusted for BMI. We identify 23 novel genetic loci, and 9 loci with convincing evidence of gene-smoking interaction (GxSMK) on obesity-related traits. We show consistent direction of effect for all identified loci and significance for 18 novel and for 5 interaction loci in an independent study sample. These loci highlight novel biological functions, including response to oxidative stress, addictive behaviour, and regulatory functions emphasizing the importance of accounting for environment in genetic analyses. Our results suggest that tobacco smoking may alter the genetic susceptibility to overall adiposity and body fat distribution
Packing procedures for high efficiency, short ion-exchange columns for rapid separation of inorganic anions
An optimised packing procedure for the production of high efficiency, short, particle-packed ion-exchange columns is reported. Slurry-packing techniques were applied to a series of interconnected short columns, with the columns situated intermediate between the inlet and outlet ends of the series being used for separations. The fast separation and determination of inorganic anions was achieved using short (4 mm ID, 30 mm long) columns packed with Dionex AS20 high-capacity anion-exchange stationary phase. Seven inorganic anions (bromate, chloride, chlorate, nitrate, sulfate, chromate and perchlorate) are separated in 2.6 min using a hydroxide gradient and a flow-rate of 1.8 mL/min (total analysis time including re-equilibration was 3.5 min). Under isocratic conditions, the home-packed columns exhibited efficiency values of 43,000 N/m for chloride at a flow-rate of 0.3 mL/min, compared to 54,000 N/m for a commercial 250 mm AS20 column at the same flow-rate. However, the short columns gave approximately a threefold higher sample throughput. The short, home-packed columns could be produced reproducibly and gave consistent performance over extended periods of usage
In vitro efficacy of Imipenem-Relebactam and Cefepime-AAI101 against a global collection of ESBL-positive and carbapenemase-producing Enterobacteriaceae
Objectives: In vitro evaluation of the potential clinical efficacy of the novel β-lactam/β-lactamase-inhibitor combinations including imipenem-relebactam (IPM-REL) and cefepime-AAI101 (enmetazobactam) (FEP-AAI) against contemporary multidrug-resistant Enterobacteriaceae.
Methods: Agar-based MIC screening against MDR-Enterobacteriaceae (n=264) was used to evaluate the in vitro efficacy of IPM-REL and FEP-AAI, to compare the results with established combinations, and to investigate alternative β-lactam partners for REL and AAI. The inhibition activities of REL, AAI and the comparators avibactam (AVI) and tazobactam, against isolated recombinant β-lactamases covering representatives from all four Ambler classes of β-lactamases were tested using a fluorescence-based assay.
Results: Using recombinant proteins, all four inhibitors were highly active against the tested class A serine β-lactamases (SBLs); REL and AVI showed moderate activity against the Class C AmpC from P. aeruginosa and the Class D OXA-10/-48 SBLs, but outperformed tazobactam and AAI. All tested inhibitors lacked activity against Class B MBLs. In the presence of REL, IPM, but not AAI susceptibility increased against KPC-positive and OXA-48-positive isolates. Both aztreonam-AVI and ceftolozane-tazobactam were more efficacious than IPM-REL. In all the tested combinations, AAI was a more effective inhibitor of class A β-lactamases (ESBLs) than the established inhibitors.
Conclusions: The results lead to the proposal of alternative combination therapies involving REL and AAI to potentiate the use of β-lactams against clinical Gram-negative isolates expressing a variety of β-lactamases. These results highlight the potential of novel combinations for combating strains not covered by existing therapies.</p
Satellite imaging - Massive emissions of toxic gas in the Atlantic
Recurrent eruptions of toxic hydrogen sulphide gas in the waters along the Namibian coast off southwestern Africa have been considered to be local features with only limited ecosystem-scale consequences. But satellite remote sensing has revealed that these naturally occurring events are much more extensive and longer-lasting than previously suspected, and that the resultant hypoxia may last for much longer. The effects on the marine ecology and valuable coastal fisheries of this region are likely to be important
- âŚ