96 research outputs found

    Boundary Terms and Junction Conditions for Generalized Scalar-Tensor Theories

    Full text link
    We compute the boundary terms and junction conditions for Horndeski's panoptic class of scalar-tensor theories, and write the bulk and boundary equations of motion in explicitly second order form. We consider a number of special subclasses, including galileon theories, and present the corresponding formulae. Our analysis opens up of the possibility of studying tunnelling between vacua in generalized scalar-tensor theories, and braneworld dynamics. The latter follows because our results are independent of spacetime dimension.Comment: 13 pages, Equation corrected. Thanks to Tsutomu Kobayashi for informing us of the typ

    A New Class of Four-Dimensional N=1 Supergravity with Non-minimal Derivative Couplings

    Full text link
    In the N=1 four-dimensional new-minimal supergravity framework, we supersymmetrise the coupling of the scalar kinetic term to the Einstein tensor. This coupling, although introduces a non-minimal derivative interaction of curvature to matter, it does not introduce harmful higher-derivatives. For this construction, we employ off-shell chiral and real linear multiplets. Physical scalars are accommodated in the chiral multiplet whereas curvature resides in a linear one.Comment: 18 pages, version published at JHE

    The Worldvolume Action of Kink Solitons in AdS Spacetime

    Full text link
    A formalism is presented for computing the higher-order corrections to the worldvolume action of co-dimension one solitons. By modifying its potential, an explicit "kink" solution of a real scalar field in AdS spacetime is found. The formalism is then applied to explicitly compute the kink worldvolume action to quadratic order in two expansion parameters--associated with the hypersurface fluctuation length and the radius of AdS spacetime respectively. Two alternative methods are given for doing this. The results are expressed in terms of the trace of the extrinsic curvature and the intrinsic scalar curvature. In addition to conformal Galileon interactions, we find a non-Galileon term which is never sub-dominant. This method can be extended to any conformally flat bulk spacetime.Comment: 32 pages, 3 figures, typos corrected and additional comments adde

    Stability of Closed Timelike Curves in a Galileon Model

    Full text link
    Recently Burrage, de Rham, Heisenberg and Tolley have constructed eternal, classical solutions with closed timelike curves (CTCs) in a Galileon model coupled to an auxiliary scalar field. These theories contain at least two distinct metrics and, in configurations with CTCs, two distinct notions of locality. As usual, globally CTCs lead to pathologies including nonlocal constraints on the initial Cauchy data. Locally, with respect to the gravitational metric, we use a WKB approximation to explicitly construct small, short-wavelength perturbations without imposing the nonlocal constraints and observe that these perturbations do not grow and so do not lead to an instability.Comment: 10 pages, no figure

    Degenerate higher order scalar-tensor theories beyond Horndeski up to cubic order

    Get PDF
    We present all scalar-tensor Lagrangians that are cubic in second derivatives of a scalar field, and that are degenerate, hence avoiding Ostrogradsky instabilities. Thanks to the existence of constraints, they propagate no more than three degrees of freedom, despite having higher order equations of motion. We also determine the viable combinations of previously identified quadratic degenerate Lagrangians and the newly established cubic ones. Finally, we study whether the new theories are connected to known scalar-tensor theories such as Horndeski and beyond Horndeski, through conformal or disformal transformations

    Disformally self-tuning gravity

    Get PDF
    We extend a previous self-tuning analysis of the most general scalar-tensor theory of gravity in four dimensions with second order field equations by considering a generalized coupling to the matter sector. Through allowing a disformal coupling to matter we are able to extend the Fab Four model and construct a new class of theories that are able to tune away the cosmological constant on Friedmann-Lemaitre-Robertson-Walker backgrounds
    corecore