20 research outputs found

    Front Physiol

    Get PDF
    Glioblastoma is among the most common tumor of the central nervous system in adults. Overall survival has not significantly improved over the last decade, even with optimizing standard therapeutic care including extent of resection and radio- and chemotherapy. In this article, we review features of the brain vasculature found in healthy cerebral tissue and in glioblastoma. Brain vessels are of various sizes and composed of several vascular cell types. Non-vascular cells such as astrocytes or microglia also interact with the vasculature and play important roles. We also discuss engineered artificial blood vessels which may represent useful models for better understanding the tumor-vessel interaction. Finally, we summarize results from clinical trials with anti-angiogenic therapy alone or in combination, and discuss the value of these approaches for targeting glioblastoma

    An Orthotopic Model of Glioblastoma Is Resistant to Radiodynamic Therapy with 5-AminoLevulinic Acid

    Get PDF
    Radiosensitization of glioblastoma is a major ambition to increase the survival of this incurable cancer. The 5-aminolevulinic acid (5-ALA) is metabolized by the heme biosynthesis pathway. 5-ALA overload leads to the accumulation of the intermediate fluorescent metabolite protoporphyrin IX (PpIX) with a radiosensitization potential, never tested in a relevant model of glioblastoma. We used a patient-derived tumor cell line grafted orthotopically to create a brain tumor model. We evaluated tumor growth and tumor burden after different regimens of encephalic multifractionated radiation therapy with or without 5-ALA. A fractionation scheme of 5 × 2 Gy three times a week resulted in intermediate survival [48-62 days] compared to 0 Gy (15-24 days), 3 × 2 Gy (41-47 days) and, 5 × 3 Gy (73-83 days). Survival was correlated to tumor growth. Tumor growth and survival were similar after 5 × 2 Gy irradiations, regardless of 5-ALA treatment (RT group (53-67 days), RT+5-ALA group (40-74 days), HR = 1.57, p = 0.24). Spheroid growth and survival were diminished by radiotherapy in vitro, unchanged by 5-ALA pre-treatment, confirming the in vivo results. The analysis of two additional stem-like patient-derived cell lines confirmed the absence of radiosensitization by 5-ALA. Our study shows for the first time that in a preclinical tumor model relevant to human glioblastoma, treated as in clinical routine, 5-ALA administration, although leading to important accumulation of PpIX, does not potentiate radiotherapy

    Lactate dehydrogenases promote glioblastoma growth and invasion via a metabolic symbiosis

    Get PDF
    Lactate is a central metabolite in brain physiology but also contributes to tumor development. Glioblastoma (GB) is the most common and malignant primary brain tumor in adults, recognized by angiogenic and invasive growth, in addition to its altered metabolism. We show herein that lactate fuels GB anaplerosis by replenishing the tricarboxylic acid (TCA) cycle in absence of glucose. Lactate dehydrogenases (LDHA and LDHB), which we found spatially expressed in GB tissues, catalyze the interconversion of pyruvate and lactate. However, ablation of both LDH isoforms, but not only one, led to a reduction in tumor growth and an increase in mouse survival. Comparative transcriptomics and metabolomics revealed metabolic rewiring involving high oxidative phosphorylation (OXPHOS) in the LDHA/B KO group which sensitized tumors to cranial irradiation, thus improving mouse survival. When mice were treated with the antiepileptic drug stiripentol, which targets LDH activity, tumor growth decreased. Our findings unveil the complex metabolic network in which both LDHA and LDHB are integrated and show that the combined inhibition of LDHA and LDHB strongly sensitizes GB to therapy.publishedVersio

    TGF-β promotes microtube formation in glioblastoma through Thrombospondin 1

    Get PDF
    International audienceAbstract Background Microtubes (MTs), cytoplasmic extensions of glioma cells, are important cell communication structures promoting invasion and treatment resistance through network formation. MTs are abundant in chemoresistant gliomas, in particular, glioblastomas (GBMs), while they are uncommon in chemosensitive IDH-mutant and 1p/19q co-deleted oligodendrogliomas. The aim of this study was to identify potential signaling pathways involved in MT formation. Methods Bioinformatics analysis of TCGA was performed to analyze differences between GBM and oligodendroglioma. Patient-derived GBM stem cell lines were used to investigate MT formation under transforming growth factor-beta (TGF-β) stimulation and inhibition in vitro and in vivo in an orthotopic xenograft model. RNA sequencing and proteomics were performed to detect commonalities and differences between GBM cell lines stimulated with TGF-β. Results Analysis of TCGA data showed that the TGF-β pathway is highly activated in GBMs compared to oligodendroglial tumors. We demonstrated that TGF-β1 stimulation of GBM cell lines promotes enhanced MT formation and communication via calcium signaling. Inhibition of the TGF-β pathway significantly reduced MT formation and its associated invasion in vitro and in vivo. Downstream of TGF-β, we identified thrombospondin 1 (TSP1) as a potential mediator of MT formation in GBM through SMAD activation. TSP1 was upregulated upon TGF-β stimulation and enhanced MT formation, which was inhibited by TSP1 shRNAs in vitro and in vivo. Conclusion TGF-β and its downstream mediator TSP1 are important mediators of the MT network in GBM and blocking this pathway could potentially help to break the complex MT-driven invasion/resistance network

    Novel mechanisms of brain tumor development

    No full text
    Le glioblastome (GBM) est la tumeur cérébrale maligne la plus fréquente et la plus agressive chez l’adulte. Il est hautement prolifératif et invasif et se caractérise par une forte angiogenèse et la présence d’un métabolisme altéré.Afin de mieux comprendre son développement, nous avons créé des modèles cellulaires tridimensionnels permettant de se rapprocher au mieux de l’architecture complexe de la tumeur. Nous avons également affiné des méthodes in vitro, tels que des essais de croissance ou d’invasion en collagène de type I, pour analyser certaines caractéristiques des GBMs.L’infiltration diffus des GBMs complique la prise en charge thérapeutique et est à l’origine des récidives tumorales. Les cellules qui envahissent le parenchyme cérébral sain peuvent former de nouveaux foyers tumoraux à distance de la tumeur originelle. En utilisant une analyse de protéomique sur des échantillons de tumeurs humaines dans des cerveaux de souris récupérées par microdissection laser, nous avons identifié de potentiels acteurs de l’invasion tumorale. Les protéines PLP1 (proteolipid protein 1) et DNM1 (dynamin-1) ont été retrouvées enrichies dans la partie invasive. Leur inhibition in vitro a permis la réduction de la capacité invasive des GBMs et pourrait représenter de potentielles cibles thérapeutiques.En adaptant son métabolisme glycolytique et oxydatif, les cellules de GBM sont capables de résister à la chimio- et radiothérapie. Le lactate est un des métabolites centraux de la physiologie cérébrale, il est impliqué dans la navette astrocyte-neurone ainsi que dans le développement tumoral. En l’absence de glucose, le lactate alimente la production d’énergie des GBMs par le biais du cycle de Krebs. Les lactates déshydrogénases (LDHs) sont les enzymes qui catalysent l’interconversion du pyruvate et du lactate. La simple perte d’expression des isoformes LDHA ou LDHB ne perturbe pas significativement le développement des GBMs. Cependant, la double extinction de LDHA et LDHB (KO LDHA/B) induit une réduction de la croissance tumorale, de l’invasion et en conséquence, allonge la survie des souris. Les analyses comparatives des données de transcriptomique et de métabolomique révèlent que la lignée double KO LDHA/B augmente le métabolisme oxydatif sensibilisant la tumeur à l’irradiation et augmentant la survie des souris. L’utilisation d’un médicament antiépileptique inhibiteur de l’activité de LDHA et LDHB a permis d’augmenter la survie des souris en association avec le bevacizumab, un médicament anticancéreux ciblant l’angiogenèse. Cette étude met en évidence le réseau métabolique complexe dans lequel LDHA et LDHB sont intriqués. Elle souligne l’importance de la double inhibition de LDHA/LDHB pour impacter le développement tumoral.Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults. It can be recognized by its angiogenic and invasive growth, in addition to its altered metabolism.To study GBM, we developed three-dimensional models to better mimic its complex architecture of tumors. We have also refined in vitro methods, such as spheroid growth or invasion in collagen I matrix, to analyze certain characteristics of GBMs.Diffuse infiltration of GBMs complicates therapeutic management and is the cause of tumor recurrence. Invading cells into the healthy brain may form new tumor foci from the original tumor. A proteomic analysis of laser microdissection-captured human tumor pieces revealed potential actors of tumor invasion. PLP1 (proteolipid protein 1) and DNM1 (dynamin-1) was found enriched in the invasive part. In vitro inhibition of these protein lead to decrease GBM invasion and may represent potential therapeutic targets.By adapting their glycolytic or oxidative metabolism, GBM stem-like cells are able to resist chemo- and radiotherapy. Lactate is a central metabolite in brain physiology, involved in the astrocyte-neuron lactate shuttle, but also contributes to tumor development. We show herein that lactate fuels GBM anaplerosis by replenishing the TCA cycle in absence of glucose. Lactate dehydrogenases (LDH) catalyze the interconversion of pyruvate and lactate. Deletion of either LDHA or LDHB did not alter significantly GBM growth and invasion. However, ablation of both LDH isoforms led to a reduction of tumor growth, and, consequently, to an increase in mouse survival. Comparative transcriptomics and metabolomics revealed metabolic rewiring involving high oxidative phosphorylation (OxPhos) in the double LDHA/B KO group which sensitized tumors to cranial irradiation, massively improving mice survival. Survival was also increased when control mice were treated by an antiepileptic which targets LDH activity. Taken together, this highlights the complex metabolic network in which both LDH A and B are integrated and underscores that combined inhibition of LDHA and B is necessary to impact tumor development

    Novel mechanisms of brain tumor development

    No full text
    Le glioblastome (GBM) est la tumeur cérébrale maligne la plus fréquente et la plus agressive chez l’adulte. Il est hautement prolifératif et invasif et se caractérise par une forte angiogenèse et la présence d’un métabolisme altéré.Afin de mieux comprendre son développement, nous avons créé des modèles cellulaires tridimensionnels permettant de se rapprocher au mieux de l’architecture complexe de la tumeur. Nous avons également affiné des méthodes in vitro, tels que des essais de croissance ou d’invasion en collagène de type I, pour analyser certaines caractéristiques des GBMs.L’infiltration diffus des GBMs complique la prise en charge thérapeutique et est à l’origine des récidives tumorales. Les cellules qui envahissent le parenchyme cérébral sain peuvent former de nouveaux foyers tumoraux à distance de la tumeur originelle. En utilisant une analyse de protéomique sur des échantillons de tumeurs humaines dans des cerveaux de souris récupérées par microdissection laser, nous avons identifié de potentiels acteurs de l’invasion tumorale. Les protéines PLP1 (proteolipid protein 1) et DNM1 (dynamin-1) ont été retrouvées enrichies dans la partie invasive. Leur inhibition in vitro a permis la réduction de la capacité invasive des GBMs et pourrait représenter de potentielles cibles thérapeutiques.En adaptant son métabolisme glycolytique et oxydatif, les cellules de GBM sont capables de résister à la chimio- et radiothérapie. Le lactate est un des métabolites centraux de la physiologie cérébrale, il est impliqué dans la navette astrocyte-neurone ainsi que dans le développement tumoral. En l’absence de glucose, le lactate alimente la production d’énergie des GBMs par le biais du cycle de Krebs. Les lactates déshydrogénases (LDHs) sont les enzymes qui catalysent l’interconversion du pyruvate et du lactate. La simple perte d’expression des isoformes LDHA ou LDHB ne perturbe pas significativement le développement des GBMs. Cependant, la double extinction de LDHA et LDHB (KO LDHA/B) induit une réduction de la croissance tumorale, de l’invasion et en conséquence, allonge la survie des souris. Les analyses comparatives des données de transcriptomique et de métabolomique révèlent que la lignée double KO LDHA/B augmente le métabolisme oxydatif sensibilisant la tumeur à l’irradiation et augmentant la survie des souris. L’utilisation d’un médicament antiépileptique inhibiteur de l’activité de LDHA et LDHB a permis d’augmenter la survie des souris en association avec le bevacizumab, un médicament anticancéreux ciblant l’angiogenèse. Cette étude met en évidence le réseau métabolique complexe dans lequel LDHA et LDHB sont intriqués. Elle souligne l’importance de la double inhibition de LDHA/LDHB pour impacter le développement tumoral.Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults. It can be recognized by its angiogenic and invasive growth, in addition to its altered metabolism.To study GBM, we developed three-dimensional models to better mimic its complex architecture of tumors. We have also refined in vitro methods, such as spheroid growth or invasion in collagen I matrix, to analyze certain characteristics of GBMs.Diffuse infiltration of GBMs complicates therapeutic management and is the cause of tumor recurrence. Invading cells into the healthy brain may form new tumor foci from the original tumor. A proteomic analysis of laser microdissection-captured human tumor pieces revealed potential actors of tumor invasion. PLP1 (proteolipid protein 1) and DNM1 (dynamin-1) was found enriched in the invasive part. In vitro inhibition of these protein lead to decrease GBM invasion and may represent potential therapeutic targets.By adapting their glycolytic or oxidative metabolism, GBM stem-like cells are able to resist chemo- and radiotherapy. Lactate is a central metabolite in brain physiology, involved in the astrocyte-neuron lactate shuttle, but also contributes to tumor development. We show herein that lactate fuels GBM anaplerosis by replenishing the TCA cycle in absence of glucose. Lactate dehydrogenases (LDH) catalyze the interconversion of pyruvate and lactate. Deletion of either LDHA or LDHB did not alter significantly GBM growth and invasion. However, ablation of both LDH isoforms led to a reduction of tumor growth, and, consequently, to an increase in mouse survival. Comparative transcriptomics and metabolomics revealed metabolic rewiring involving high oxidative phosphorylation (OxPhos) in the double LDHA/B KO group which sensitized tumors to cranial irradiation, massively improving mice survival. Survival was also increased when control mice were treated by an antiepileptic which targets LDH activity. Taken together, this highlights the complex metabolic network in which both LDH A and B are integrated and underscores that combined inhibition of LDHA and B is necessary to impact tumor development

    Nouveaux mécanismes du développement des tumeurs cérébrales

    No full text
    Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults. It can be recognized by its angiogenic and invasive growth, in addition to its altered metabolism.To study GBM, we developed three-dimensional models to better mimic its complex architecture of tumors. We have also refined in vitro methods, such as spheroid growth or invasion in collagen I matrix, to analyze certain characteristics of GBMs.Diffuse infiltration of GBMs complicates therapeutic management and is the cause of tumor recurrence. Invading cells into the healthy brain may form new tumor foci from the original tumor. A proteomic analysis of laser microdissection-captured human tumor pieces revealed potential actors of tumor invasion. PLP1 (proteolipid protein 1) and DNM1 (dynamin-1) was found enriched in the invasive part. In vitro inhibition of these protein lead to decrease GBM invasion and may represent potential therapeutic targets.By adapting their glycolytic or oxidative metabolism, GBM stem-like cells are able to resist chemo- and radiotherapy. Lactate is a central metabolite in brain physiology, involved in the astrocyte-neuron lactate shuttle, but also contributes to tumor development. We show herein that lactate fuels GBM anaplerosis by replenishing the TCA cycle in absence of glucose. Lactate dehydrogenases (LDH) catalyze the interconversion of pyruvate and lactate. Deletion of either LDHA or LDHB did not alter significantly GBM growth and invasion. However, ablation of both LDH isoforms led to a reduction of tumor growth, and, consequently, to an increase in mouse survival. Comparative transcriptomics and metabolomics revealed metabolic rewiring involving high oxidative phosphorylation (OxPhos) in the double LDHA/B KO group which sensitized tumors to cranial irradiation, massively improving mice survival. Survival was also increased when control mice were treated by an antiepileptic which targets LDH activity. Taken together, this highlights the complex metabolic network in which both LDH A and B are integrated and underscores that combined inhibition of LDHA and B is necessary to impact tumor development.Le glioblastome (GBM) est la tumeur cérébrale maligne la plus fréquente et la plus agressive chez l’adulte. Il est hautement prolifératif et invasif et se caractérise par une forte angiogenèse et la présence d’un métabolisme altéré.Afin de mieux comprendre son développement, nous avons créé des modèles cellulaires tridimensionnels permettant de se rapprocher au mieux de l’architecture complexe de la tumeur. Nous avons également affiné des méthodes in vitro, tels que des essais de croissance ou d’invasion en collagène de type I, pour analyser certaines caractéristiques des GBMs.L’infiltration diffus des GBMs complique la prise en charge thérapeutique et est à l’origine des récidives tumorales. Les cellules qui envahissent le parenchyme cérébral sain peuvent former de nouveaux foyers tumoraux à distance de la tumeur originelle. En utilisant une analyse de protéomique sur des échantillons de tumeurs humaines dans des cerveaux de souris récupérées par microdissection laser, nous avons identifié de potentiels acteurs de l’invasion tumorale. Les protéines PLP1 (proteolipid protein 1) et DNM1 (dynamin-1) ont été retrouvées enrichies dans la partie invasive. Leur inhibition in vitro a permis la réduction de la capacité invasive des GBMs et pourrait représenter de potentielles cibles thérapeutiques.En adaptant son métabolisme glycolytique et oxydatif, les cellules de GBM sont capables de résister à la chimio- et radiothérapie. Le lactate est un des métabolites centraux de la physiologie cérébrale, il est impliqué dans la navette astrocyte-neurone ainsi que dans le développement tumoral. En l’absence de glucose, le lactate alimente la production d’énergie des GBMs par le biais du cycle de Krebs. Les lactates déshydrogénases (LDHs) sont les enzymes qui catalysent l’interconversion du pyruvate et du lactate. La simple perte d’expression des isoformes LDHA ou LDHB ne perturbe pas significativement le développement des GBMs. Cependant, la double extinction de LDHA et LDHB (KO LDHA/B) induit une réduction de la croissance tumorale, de l’invasion et en conséquence, allonge la survie des souris. Les analyses comparatives des données de transcriptomique et de métabolomique révèlent que la lignée double KO LDHA/B augmente le métabolisme oxydatif sensibilisant la tumeur à l’irradiation et augmentant la survie des souris. L’utilisation d’un médicament antiépileptique inhibiteur de l’activité de LDHA et LDHB a permis d’augmenter la survie des souris en association avec le bevacizumab, un médicament anticancéreux ciblant l’angiogenèse. Cette étude met en évidence le réseau métabolique complexe dans lequel LDHA et LDHB sont intriqués. Elle souligne l’importance de la double inhibition de LDHA/LDHB pour impacter le développement tumoral

    Nouveaux mécanismes du développement des tumeurs cérébrales

    No full text
    Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults. It can be recognized by its angiogenic and invasive growth, in addition to its altered metabolism.To study GBM, we developed three-dimensional models to better mimic its complex architecture of tumors. We have also refined in vitro methods, such as spheroid growth or invasion in collagen I matrix, to analyze certain characteristics of GBMs.Diffuse infiltration of GBMs complicates therapeutic management and is the cause of tumor recurrence. Invading cells into the healthy brain may form new tumor foci from the original tumor. A proteomic analysis of laser microdissection-captured human tumor pieces revealed potential actors of tumor invasion. PLP1 (proteolipid protein 1) and DNM1 (dynamin-1) was found enriched in the invasive part. In vitro inhibition of these protein lead to decrease GBM invasion and may represent potential therapeutic targets.By adapting their glycolytic or oxidative metabolism, GBM stem-like cells are able to resist chemo- and radiotherapy. Lactate is a central metabolite in brain physiology, involved in the astrocyte-neuron lactate shuttle, but also contributes to tumor development. We show herein that lactate fuels GBM anaplerosis by replenishing the TCA cycle in absence of glucose. Lactate dehydrogenases (LDH) catalyze the interconversion of pyruvate and lactate. Deletion of either LDHA or LDHB did not alter significantly GBM growth and invasion. However, ablation of both LDH isoforms led to a reduction of tumor growth, and, consequently, to an increase in mouse survival. Comparative transcriptomics and metabolomics revealed metabolic rewiring involving high oxidative phosphorylation (OxPhos) in the double LDHA/B KO group which sensitized tumors to cranial irradiation, massively improving mice survival. Survival was also increased when control mice were treated by an antiepileptic which targets LDH activity. Taken together, this highlights the complex metabolic network in which both LDH A and B are integrated and underscores that combined inhibition of LDHA and B is necessary to impact tumor development.Le glioblastome (GBM) est la tumeur cérébrale maligne la plus fréquente et la plus agressive chez l’adulte. Il est hautement prolifératif et invasif et se caractérise par une forte angiogenèse et la présence d’un métabolisme altéré.Afin de mieux comprendre son développement, nous avons créé des modèles cellulaires tridimensionnels permettant de se rapprocher au mieux de l’architecture complexe de la tumeur. Nous avons également affiné des méthodes in vitro, tels que des essais de croissance ou d’invasion en collagène de type I, pour analyser certaines caractéristiques des GBMs.L’infiltration diffus des GBMs complique la prise en charge thérapeutique et est à l’origine des récidives tumorales. Les cellules qui envahissent le parenchyme cérébral sain peuvent former de nouveaux foyers tumoraux à distance de la tumeur originelle. En utilisant une analyse de protéomique sur des échantillons de tumeurs humaines dans des cerveaux de souris récupérées par microdissection laser, nous avons identifié de potentiels acteurs de l’invasion tumorale. Les protéines PLP1 (proteolipid protein 1) et DNM1 (dynamin-1) ont été retrouvées enrichies dans la partie invasive. Leur inhibition in vitro a permis la réduction de la capacité invasive des GBMs et pourrait représenter de potentielles cibles thérapeutiques.En adaptant son métabolisme glycolytique et oxydatif, les cellules de GBM sont capables de résister à la chimio- et radiothérapie. Le lactate est un des métabolites centraux de la physiologie cérébrale, il est impliqué dans la navette astrocyte-neurone ainsi que dans le développement tumoral. En l’absence de glucose, le lactate alimente la production d’énergie des GBMs par le biais du cycle de Krebs. Les lactates déshydrogénases (LDHs) sont les enzymes qui catalysent l’interconversion du pyruvate et du lactate. La simple perte d’expression des isoformes LDHA ou LDHB ne perturbe pas significativement le développement des GBMs. Cependant, la double extinction de LDHA et LDHB (KO LDHA/B) induit une réduction de la croissance tumorale, de l’invasion et en conséquence, allonge la survie des souris. Les analyses comparatives des données de transcriptomique et de métabolomique révèlent que la lignée double KO LDHA/B augmente le métabolisme oxydatif sensibilisant la tumeur à l’irradiation et augmentant la survie des souris. L’utilisation d’un médicament antiépileptique inhibiteur de l’activité de LDHA et LDHB a permis d’augmenter la survie des souris en association avec le bevacizumab, un médicament anticancéreux ciblant l’angiogenèse. Cette étude met en évidence le réseau métabolique complexe dans lequel LDHA et LDHB sont intriqués. Elle souligne l’importance de la double inhibition de LDHA/LDHB pour impacter le développement tumoral

    Association Between Antiangiogenic Drugs Used for Cancer Treatment and Artery Dissections or Aneurysms

    No full text
    Anticancer drugs targeting angiogenesis act either directly on vascular endothelial growth factor (VEGF) receptors (VEGF inhibitors) or VEGF-mediated intracellular processes (tyrosine kinase inhibitors) or indirectly through downstream VEGF signaling within broader processes (mammalian target of rapamycin inhibitors and multiprotein kinase inhibitors). Although VEGF blockade may be implicated in arterial wall injuries, the literature on the association between antiangiogenic drugs and artery dissections or aneurysms is scant, comprising only a few case reports and 1 pharmacovigilance study conducted in Japan.1 The present study evaluated the association between all antiangiogenic drugs and dissections or aneurysms occurring in all arteries
    corecore